Identifying reading strategies using latent semantic analysis: comparing semantic benchmarks.

Keith Millis, Hyun-Jeong Joyce Kim, Stacey Todaro, Joseph P Magliano, Katja Wiemer-Hastings, Danielle S McNamara
{"title":"Identifying reading strategies using latent semantic analysis: comparing semantic benchmarks.","authors":"Keith Millis,&nbsp;Hyun-Jeong Joyce Kim,&nbsp;Stacey Todaro,&nbsp;Joseph P Magliano,&nbsp;Katja Wiemer-Hastings,&nbsp;Danielle S McNamara","doi":"10.3758/bf03195566","DOIUrl":null,"url":null,"abstract":"<p><p>We explored methods of using latent semantic analysis (LSA) to identify reading strategies in students' self-explanations that are collected as part of a Web-based reading trainer. In this study, college students self-explained scientific texts, one sentence at a time. ISA was used to measure the similarity between the self-explanations and semantic benchmarks (groups of words and sentences that together represent reading strategies). Three types of semantic benchmarks were compared: content words, exemplars, and strategies. Discriminant analyses were used to classify global and specific reading strategies using the LSA cosines. All benchmarks contributed to the classification of general reading strategies, but the exemplars did the best in distinguishing subtle semantic differences between reading strategies. Pragmatic and theoretical concerns of using LSA are discussed.</p>","PeriodicalId":79800,"journal":{"name":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","volume":"36 2","pages":"213-21"},"PeriodicalIF":0.0000,"publicationDate":"2004-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3758/bf03195566","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3758/bf03195566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We explored methods of using latent semantic analysis (LSA) to identify reading strategies in students' self-explanations that are collected as part of a Web-based reading trainer. In this study, college students self-explained scientific texts, one sentence at a time. ISA was used to measure the similarity between the self-explanations and semantic benchmarks (groups of words and sentences that together represent reading strategies). Three types of semantic benchmarks were compared: content words, exemplars, and strategies. Discriminant analyses were used to classify global and specific reading strategies using the LSA cosines. All benchmarks contributed to the classification of general reading strategies, but the exemplars did the best in distinguishing subtle semantic differences between reading strategies. Pragmatic and theoretical concerns of using LSA are discussed.

使用潜在语义分析识别阅读策略:比较语义基准。
我们探索了使用潜在语义分析(LSA)来识别学生自我解释中的阅读策略的方法,这些阅读策略收集自一个基于网络的阅读训练器。在这项研究中,大学生自我解释科学文本,一次一个句子。ISA被用来衡量自我解释和语义基准(一组单词和句子一起代表阅读策略)之间的相似性。比较了三种类型的语义基准:内容词、范例和策略。判别分析使用LSA余弦对全局和特定阅读策略进行分类。所有基准都有助于一般阅读策略的分类,但范例在区分阅读策略之间的细微语义差异方面做得最好。讨论了使用LSA的语用问题和理论问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信