{"title":"Radiometallo-labeled peptides in tumor diagnosis and therapy.","authors":"Mihaela Ginj, Helmut R Maecke","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Radiometallo-labeled analogs of somatostatin have shown great benefit in the in vivo localization and targeted radiotherapy of human tumors. The progress and innovation in this clinical application came from the change in strategy, leaving the most widely used radiohalogens for a coordination chemistry approach. The use of chelators appended to the biologically active peptide which convey high thermodynamic and kinetic stability to the radiopeptides did not only improve the pharmacokinetics and pharmacodynamics of the molecules, but surprisingly the biological potency as well. The most urgent problem to be solved in the field is to improve the kidney clearance of the radiopeptides. The kidney turned out to be the dose limiting organ in this type of targeted radiotherapy. Coordination chemical strategies have already paved the way to a successful clinical application; it is most likely that chelator modification will further help to improve the renal handling of radiometallo-peptides.</p>","PeriodicalId":54739,"journal":{"name":"Metal Ions in Biological Systems","volume":"42 ","pages":"109-42"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metal Ions in Biological Systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Radiometallo-labeled analogs of somatostatin have shown great benefit in the in vivo localization and targeted radiotherapy of human tumors. The progress and innovation in this clinical application came from the change in strategy, leaving the most widely used radiohalogens for a coordination chemistry approach. The use of chelators appended to the biologically active peptide which convey high thermodynamic and kinetic stability to the radiopeptides did not only improve the pharmacokinetics and pharmacodynamics of the molecules, but surprisingly the biological potency as well. The most urgent problem to be solved in the field is to improve the kidney clearance of the radiopeptides. The kidney turned out to be the dose limiting organ in this type of targeted radiotherapy. Coordination chemical strategies have already paved the way to a successful clinical application; it is most likely that chelator modification will further help to improve the renal handling of radiometallo-peptides.