{"title":"The sarcoplasmic reticulum in muscle fatigue and disease: role of the sarco(endo)plasmic reticulum Ca2+-ATPase.","authors":"A Russell Tupling","doi":"10.1139/h04-021","DOIUrl":null,"url":null,"abstract":"<p><p>Skeletal muscles induced to contract repeatedly respond with a progressive loss in their ability to generate a target force or power. This condition is known simply as fatigue. Commonly, fatigue may persist for prolonged periods of time, particularly at low activation frequencies, which is called low-frequency fatigue. Failure to activate the contractile apparatus with the appropriate intracellular free calcium ([Ca2+]f) signal contributes to fatigue but the precise mechanisms involved are unknown. The sarcoplasmic reticulum (SR) is the major organelle in muscle that is responsible for the regulation of [Ca2+]f, and numerous studies have shown that SR function, both Ca2+ release and Ca2+ uptake, is impaired following fatiguing contractile activity. The major aim of this review is to provide insight into the various cellular mechanisms underlying the alterations in SR Ca2+ cycling and cytosolic [Ca2+]f that are associated both with the development of fatigue during repeated muscle contraction and with low-frequency or long-lasting fatigue. The primary focus will be on the role of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in normal muscle function, fatigue, and disease.</p>","PeriodicalId":79394,"journal":{"name":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","volume":"29 3","pages":"308-29"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1139/h04-021","citationCount":"90","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian journal of applied physiology = Revue canadienne de physiologie appliquee","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1139/h04-021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 90
Abstract
Skeletal muscles induced to contract repeatedly respond with a progressive loss in their ability to generate a target force or power. This condition is known simply as fatigue. Commonly, fatigue may persist for prolonged periods of time, particularly at low activation frequencies, which is called low-frequency fatigue. Failure to activate the contractile apparatus with the appropriate intracellular free calcium ([Ca2+]f) signal contributes to fatigue but the precise mechanisms involved are unknown. The sarcoplasmic reticulum (SR) is the major organelle in muscle that is responsible for the regulation of [Ca2+]f, and numerous studies have shown that SR function, both Ca2+ release and Ca2+ uptake, is impaired following fatiguing contractile activity. The major aim of this review is to provide insight into the various cellular mechanisms underlying the alterations in SR Ca2+ cycling and cytosolic [Ca2+]f that are associated both with the development of fatigue during repeated muscle contraction and with low-frequency or long-lasting fatigue. The primary focus will be on the role of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in normal muscle function, fatigue, and disease.