Yong Bae Song , Hiram Kwak , Woosuk Cho , Kyung Su Kim , Yoon Seok Jung , Kern-Ho Park
{"title":"Electrochemo-mechanical effects as a critical design factor for all-solid-state batteries","authors":"Yong Bae Song , Hiram Kwak , Woosuk Cho , Kyung Su Kim , Yoon Seok Jung , Kern-Ho Park","doi":"10.1016/j.cossms.2021.100977","DOIUrl":null,"url":null,"abstract":"<div><p>All-solid-state batteries (ASSBs) using inorganic solid electrolytes (SEs) are in the spotlight for next-generation energy storage devices because of their potential for outstanding safety and high energy density. Recent progress in this field has been primarily based on advances in materials, such as the discovery of SEs with high ionic conductivities and the improvement of interfacial stability in electrodes. However, the use of inelastic SEs causes severe electrochemo-mechanical failures, such as cathode active material (CAM) disintegration, CAM/SE contact loss, and stress build-up during cycling, deteriorating the Li<sup>+</sup> and e<sup>−</sup> transport pathways. Although these concerns have been addressed previously, they have not been contextualized systematically in terms of the mechanical interactions among the components and their impacts on electrochemical performance. Here, we categorize the electrochemo-mechanical effect in ASSBs and its ramifications in terms of stress sources, active materials, composite electrodes, and cell stacks.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 1","pages":"Article 100977"},"PeriodicalIF":12.2000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028621000802","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 29
Abstract
All-solid-state batteries (ASSBs) using inorganic solid electrolytes (SEs) are in the spotlight for next-generation energy storage devices because of their potential for outstanding safety and high energy density. Recent progress in this field has been primarily based on advances in materials, such as the discovery of SEs with high ionic conductivities and the improvement of interfacial stability in electrodes. However, the use of inelastic SEs causes severe electrochemo-mechanical failures, such as cathode active material (CAM) disintegration, CAM/SE contact loss, and stress build-up during cycling, deteriorating the Li+ and e− transport pathways. Although these concerns have been addressed previously, they have not been contextualized systematically in terms of the mechanical interactions among the components and their impacts on electrochemical performance. Here, we categorize the electrochemo-mechanical effect in ASSBs and its ramifications in terms of stress sources, active materials, composite electrodes, and cell stacks.
期刊介绍:
Title: Current Opinion in Solid State & Materials Science
Journal Overview:
Aims to provide a snapshot of the latest research and advances in materials science
Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science
Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields
Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research
Promotes cross-fertilization of ideas across an increasingly interdisciplinary field