Valley polarization, magnetic anisotropy and band alignment engineering in two-dimensional 2H-VTe2/1T-FeCl2 van der Waals heterostructures

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chongxin Wang, Yukai An
{"title":"Valley polarization, magnetic anisotropy and band alignment engineering in two-dimensional 2H-VTe2/1T-FeCl2 van der Waals heterostructures","authors":"Chongxin Wang,&nbsp;Yukai An","doi":"10.1016/j.apsusc.2022.152520","DOIUrl":null,"url":null,"abstract":"<div><p>The effects of stacking configurations, biaxial strain, and layer distance on the valley polarization and band alignment of 2H-VTe<sub>2</sub>/1T-FeCl<sub>2</sub> van der Waals heterostructures are investigated through the first-principles calculations. The results predict that magnetic anisotropy behavior with its easy magnetization axis stability keeps in-plane with altering stacking orders and biaxial strain from −6% to 6%. The valley polarization of 2H-VTe<sub>2</sub> is well preserved in the 2H-VTe<sub>2</sub>/1T-FeCl<sub>2</sub> heterostructures, and the most stable stacking configuration with type-I band alignment exhibits a large valley polarization of 156.5 meV, which can realize a maximum valley polarization of 166.6 meV at the compression strain of −4%. The biaxial strain remarkably alters the band structure of heterostructures and achieves the transitions from type-I to type-II and III band alignments as well as from semiconductor to metallic. The modulation of layer distance shows a weak effect on valley polarization and only can convert the band alignment from type-I to type-II. The significant variations of band alignments enable 2H-VTe<sub>2</sub>/1T-FeCl<sub>2</sub> heterostructure to become an attractive candidate for optoelectronic and photocatalytic materials and also give rise to the possibility of valleytronics and spintronics application.</p></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433222001052","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 4

Abstract

The effects of stacking configurations, biaxial strain, and layer distance on the valley polarization and band alignment of 2H-VTe2/1T-FeCl2 van der Waals heterostructures are investigated through the first-principles calculations. The results predict that magnetic anisotropy behavior with its easy magnetization axis stability keeps in-plane with altering stacking orders and biaxial strain from −6% to 6%. The valley polarization of 2H-VTe2 is well preserved in the 2H-VTe2/1T-FeCl2 heterostructures, and the most stable stacking configuration with type-I band alignment exhibits a large valley polarization of 156.5 meV, which can realize a maximum valley polarization of 166.6 meV at the compression strain of −4%. The biaxial strain remarkably alters the band structure of heterostructures and achieves the transitions from type-I to type-II and III band alignments as well as from semiconductor to metallic. The modulation of layer distance shows a weak effect on valley polarization and only can convert the band alignment from type-I to type-II. The significant variations of band alignments enable 2H-VTe2/1T-FeCl2 heterostructure to become an attractive candidate for optoelectronic and photocatalytic materials and also give rise to the possibility of valleytronics and spintronics application.

二维2H-VTe2/1T-FeCl2范德华异质结构的谷极化、磁各向异性和能带对准工程
通过第一性原理计算研究了堆叠构型、双轴应变和层距对2H-VTe2/1T-FeCl2范德华异质结构的谷极化和带向的影响。结果表明,在- 6% ~ 6%的应变范围内,随着堆积顺序和双轴应变的变化,磁性各向异性行为保持在平面内,磁化轴稳定。2H-VTe2的谷极化在2H-VTe2/ 1t - fecl2异质结构中得到了很好的保留,在i型带取向下,最稳定的堆叠构型表现出156.5 meV的大谷极化,在压缩应变为- 4%时可实现166.6 meV的最大谷极化。双轴应变显著改变了异质结构的能带结构,实现了从i型到ii型和III型能带对准以及从半导体到金属的转变。层距调制对谷偏振的影响较弱,只能将波段对准从i型转换为ii型。能带排列的显著变化使2H-VTe2/1T-FeCl2异质结构成为光电子和光催化材料的有吸引力的候选材料,并为谷电子和自旋电子学的应用提供了可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信