Jan M Schwab, Hermann J Schluesener, Richard Meyermann, Charles N Serhan
{"title":"COX-3 the enzyme and the concept: steps towards highly specialized pathways and precision therapeutics?","authors":"Jan M Schwab, Hermann J Schluesener, Richard Meyermann, Charles N Serhan","doi":"10.1016/j.plefa.2003.07.003","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclooxygenases (COXs) catalyse the key rate-limiting step in prostanoid and thromboxane biosynthesis and are targets of non-steroidal anti-inflammatory drugs (NSAIDs). Until recently, the presence of only two isoforms-COX-1 and COX-2-remained in question because the potent anti-pyretic and analgesic effects of acetaminophen (paracetamol, tylenol ben-u-ron) could not be explained by either COX-1 or COX-2 blockades. A novel COX-1 splice variant termed COX-3, sensitive to acetaminophen, was recently discovered by Simmons et al., and is considered to play a key role in the biosynthesis of prostanoids known to be important mediators in pain and fever. Drugs that preferential block COX-1 also appear to act at COX-3. However the existence of COX-3 at the nucleotide sequence level in humans has been called to question. A functional COX-3 in humans is still to come underlining that the concept of COX-3 is still attractive. Here, we discuss some of the implications drawn from the identification of additional functional cyclooxygenase members in the generation of bioactive autacoids.</p>","PeriodicalId":20659,"journal":{"name":"Prostaglandins, leukotrienes, and essential fatty acids","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.plefa.2003.07.003","citationCount":"63","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins, leukotrienes, and essential fatty acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.plefa.2003.07.003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 63
Abstract
Cyclooxygenases (COXs) catalyse the key rate-limiting step in prostanoid and thromboxane biosynthesis and are targets of non-steroidal anti-inflammatory drugs (NSAIDs). Until recently, the presence of only two isoforms-COX-1 and COX-2-remained in question because the potent anti-pyretic and analgesic effects of acetaminophen (paracetamol, tylenol ben-u-ron) could not be explained by either COX-1 or COX-2 blockades. A novel COX-1 splice variant termed COX-3, sensitive to acetaminophen, was recently discovered by Simmons et al., and is considered to play a key role in the biosynthesis of prostanoids known to be important mediators in pain and fever. Drugs that preferential block COX-1 also appear to act at COX-3. However the existence of COX-3 at the nucleotide sequence level in humans has been called to question. A functional COX-3 in humans is still to come underlining that the concept of COX-3 is still attractive. Here, we discuss some of the implications drawn from the identification of additional functional cyclooxygenase members in the generation of bioactive autacoids.
期刊介绍:
The role of lipids, including essential fatty acids and their prostaglandin, leukotriene and other derivatives, is now evident in almost all areas of biomedical science. Cell membrane behaviour and cell signalling in all tissues are highly dependent on the lipid constituents of cells. Prostaglandins, Leukotrienes & Essential Fatty Acids aims to cover all aspects of the roles of lipids in cellular, organ and whole organism function, and places a particular emphasis on human studies. Papers concerning all medical specialties are published. Much of the material is particularly relevant to the development of novel treatments for disease.