Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids.

Andrew T Simpson
{"title":"Comparison of methods for the measurement of mist and vapor from light mineral oil-based metalworking fluids.","authors":"Andrew T Simpson","doi":"10.1080/10473220390237386","DOIUrl":null,"url":null,"abstract":"<p><p>The measurement of oil mist derived from metalworking fluids formulated with light mineral oils can be highly inaccurate when using traditional filter sampling. This is due to evaporation of oil from the filter. In this work the practicability of an alternative approach measuring total oil mist and vapor was investigated. Combinations of inhalable particle samplers with backup sorbent vapor traps and standard vapor sampling on pumped and diffusive sorbent tubes were evaluated with gravimetric, infrared spectroscopic, and gas chromatographic analytical methods against the performance requirements of European Standard EN 482. An artificial aerosol was used to compare the methods against a reference method of filter sampler in series with three impingers. Multi-orifice samplers were used with standard 8-mm diameter charcoal tubes at 2 L/min without any signs of channelling or significant breakthrough, as were conical inhalable samplers with XAD-2 tubes at 1 L/min. Most combinations of samplers had a bias of less than 3 percent, but solitary pumped charcoal tubes underestimated total oil by 13 percent. Diffusive sampling was affected by impaction of mist particles and condensation of oil vapor. Gravimetric analysis of filters revealed significant potential sample loss during storage, with 4 percent being lost after one day when stored at room temperature and 2 percent when refrigerated. Samples left overnight in the balance room to equilibrate lost 24 percent. Infrared spectroscopy gave more precise results for vapor than gas chromatography (p = 0.002). Gas chromatography was less susceptible to bias from contaminating solvent vapors than infrared spectroscopy, but was still vulnerable to petroleum distillates. Under the specific test conditions (one oil type and mist particle size), all combinations of methods examined complied with the requirements of European Standard EN 484. Total airborne oil can be measured accurately; however, care must be taken to avoid contamination by hydrocarbon solvent vapors during sampling.</p>","PeriodicalId":8182,"journal":{"name":"Applied occupational and environmental hygiene","volume":"18 11","pages":"865-76"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10473220390237386","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied occupational and environmental hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10473220390237386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The measurement of oil mist derived from metalworking fluids formulated with light mineral oils can be highly inaccurate when using traditional filter sampling. This is due to evaporation of oil from the filter. In this work the practicability of an alternative approach measuring total oil mist and vapor was investigated. Combinations of inhalable particle samplers with backup sorbent vapor traps and standard vapor sampling on pumped and diffusive sorbent tubes were evaluated with gravimetric, infrared spectroscopic, and gas chromatographic analytical methods against the performance requirements of European Standard EN 482. An artificial aerosol was used to compare the methods against a reference method of filter sampler in series with three impingers. Multi-orifice samplers were used with standard 8-mm diameter charcoal tubes at 2 L/min without any signs of channelling or significant breakthrough, as were conical inhalable samplers with XAD-2 tubes at 1 L/min. Most combinations of samplers had a bias of less than 3 percent, but solitary pumped charcoal tubes underestimated total oil by 13 percent. Diffusive sampling was affected by impaction of mist particles and condensation of oil vapor. Gravimetric analysis of filters revealed significant potential sample loss during storage, with 4 percent being lost after one day when stored at room temperature and 2 percent when refrigerated. Samples left overnight in the balance room to equilibrate lost 24 percent. Infrared spectroscopy gave more precise results for vapor than gas chromatography (p = 0.002). Gas chromatography was less susceptible to bias from contaminating solvent vapors than infrared spectroscopy, but was still vulnerable to petroleum distillates. Under the specific test conditions (one oil type and mist particle size), all combinations of methods examined complied with the requirements of European Standard EN 484. Total airborne oil can be measured accurately; however, care must be taken to avoid contamination by hydrocarbon solvent vapors during sampling.

轻矿物油基金属加工液中雾和蒸气测量方法的比较。
当使用传统的过滤采样时,测量由轻矿物油配制的金属加工液产生的油雾可能非常不准确。这是由于油从过滤器蒸发。本文研究了一种测量总油雾和总油蒸气的替代方法的可行性。根据欧洲标准EN 482的性能要求,用重量、红外光谱和气相色谱分析方法评估了可吸入颗粒取样器与备用吸附剂蒸汽捕集器的组合,以及在泵送和扩散吸收管上的标准蒸汽取样。用人工气溶胶与三冲击器串联过滤采样的参考方法进行了比较。多孔取样器使用标准直径8毫米的木炭管,速度为2l /min,没有任何通道或明显突破的迹象,锥形可吸入取样器使用XAD-2管,速度为1l /min。大多数采样器组合的偏差小于3%,但单独的抽炭管低估了总油量的13%。扩散取样受雾粒的撞击和油蒸气的冷凝影响。对过滤器的重量分析显示,在储存过程中,样品的潜在损失很大,在室温下储存一天后损失了4%,在冷藏时损失了2%。样品在平衡室中放置一夜以达到平衡,损失了24%。红外光谱法比气相色谱法给出了更精确的结果(p = 0.002)。气相色谱法比红外光谱法更不容易受到溶剂蒸气污染的影响,但仍然容易受到石油馏分油的影响。在特定的测试条件下(一种油类型和雾颗粒大小),所有测试方法的组合都符合欧洲标准EN 484的要求。可准确测量空气中总油量;但是,在取样过程中必须注意避免碳氢化合物溶剂蒸汽的污染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信