{"title":"Nonlinear optics in optical-fiber nanowires and their applications","authors":"Fei Xu, Zhen-xing Wu, Yan-qing Lu","doi":"10.1016/j.pquantelec.2017.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>We review recent research on nonlinear optical interactions in optical-fiber nanowires (OFNs) with sub-micron transverse dimensions. Such OFNs, which are fabricated from standard optical fibers, offer numerous beneficial optical and mechanical properties<span>, including strong evanescent fields, high flexibility and configurability, a small mass, and low-loss interconnection to other optical fibers and fiberized components. In particular, the strong confinement of light enables a large enhancement of nonlinear interactions and group-velocity dispersion engineering. The combination of these properties makes OFNs ideal for many nonlinear optical applications, including harmonic generation, Brillouin scattering<span>, four-wave mixing, supercontinuum generation, and optomechanics.</span></span></p><p>With the incorporation of new materials, OFNs should be ideally suited for a host of nonlinear optical interactions and devices and offer great potential in miniature fiber devices for optical telecommunications and optical sensor applications.</p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2017.07.003","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672717300289","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 10
Abstract
We review recent research on nonlinear optical interactions in optical-fiber nanowires (OFNs) with sub-micron transverse dimensions. Such OFNs, which are fabricated from standard optical fibers, offer numerous beneficial optical and mechanical properties, including strong evanescent fields, high flexibility and configurability, a small mass, and low-loss interconnection to other optical fibers and fiberized components. In particular, the strong confinement of light enables a large enhancement of nonlinear interactions and group-velocity dispersion engineering. The combination of these properties makes OFNs ideal for many nonlinear optical applications, including harmonic generation, Brillouin scattering, four-wave mixing, supercontinuum generation, and optomechanics.
With the incorporation of new materials, OFNs should be ideally suited for a host of nonlinear optical interactions and devices and offer great potential in miniature fiber devices for optical telecommunications and optical sensor applications.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.