{"title":"Advances and prospects of lasers developed from colloidal semiconductor nanostructures","authors":"Yue Wang , Handong Sun","doi":"10.1016/j.pquantelec.2018.05.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>Since the first observation of stimulated emission from colloidal </span>quantum dots<span> (CQDs) in year 2000, tremendous progress has been made in developing solution-processed lasers from colloidal semiconductor nanostructures<span> in terms of both understanding the fundamental physics and improving the device performance. In this review paper, we will start with a brief introduction about the fabrication of CQDs and the corresponding electronic structures. The emphasis will be put on the discussion about the optical gain and lasing from colloidal nanostructures including the gain mechanism, the main hurdles against optical gain and lasing as well as strategies to optimize the lasing performance. Afterwards, the recent advances in CQD lasers, exemplified by the achievement of continuous wave lasing, will be presented. Finally, the challenges and a perspective of the future development of lasers based on the colloidal semiconductor nanostructures will be presented.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"60 ","pages":"Pages 1-29"},"PeriodicalIF":7.4000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.pquantelec.2018.05.002","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S007967271830020X","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 36
Abstract
Since the first observation of stimulated emission from colloidal quantum dots (CQDs) in year 2000, tremendous progress has been made in developing solution-processed lasers from colloidal semiconductor nanostructures in terms of both understanding the fundamental physics and improving the device performance. In this review paper, we will start with a brief introduction about the fabrication of CQDs and the corresponding electronic structures. The emphasis will be put on the discussion about the optical gain and lasing from colloidal nanostructures including the gain mechanism, the main hurdles against optical gain and lasing as well as strategies to optimize the lasing performance. Afterwards, the recent advances in CQD lasers, exemplified by the achievement of continuous wave lasing, will be presented. Finally, the challenges and a perspective of the future development of lasers based on the colloidal semiconductor nanostructures will be presented.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.