An antioxidative sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment

IF 4.7 4区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jiachen Chen B.S. , Jiahe Wu Ph.D. , Jiafu Mu B.S. , Liming Li Ph.D. , Jingyi Hu B.S. , Hangjuan Lin M.D. , Jian Cao M.D. , Jianqing Gao Ph.D.
{"title":"An antioxidative sophora exosome-encapsulated hydrogel promotes spinal cord repair by regulating oxidative stress microenvironment","authors":"Jiachen Chen B.S. ,&nbsp;Jiahe Wu Ph.D. ,&nbsp;Jiafu Mu B.S. ,&nbsp;Liming Li Ph.D. ,&nbsp;Jingyi Hu B.S. ,&nbsp;Hangjuan Lin M.D. ,&nbsp;Jian Cao M.D. ,&nbsp;Jianqing Gao Ph.D.","doi":"10.1016/j.nano.2022.102625","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Spinal cord injury<span> (SCI) is a severe traumatic disease because of its complications and multi-organ dysfunction. After the injury, the disruption of microenvironment </span></span>homeostasis in the lesion demolishes the surrounding healthy tissues </span><em>via</em><span><span> various pathways. The microenvironment regulation is beneficial for neural and functional recovery. Sustained release, cellular uptake, and long-term retention of therapeutic molecules at the impaired sites are important for continuous microenvironment improvement. In our study, a local-implantation system was constructed for SCI </span>treatment<span> by encapsulating exosomes derived from </span></span><em>Flos Sophorae Immaturus</em><span><span><span><span><span> (so-exos) in a polydopamine-modified hydrogel (pDA-Gel). So-exos are used as nanoscale natural vehicles of </span>rutin, a </span>flavonoid </span>phytochemical that is effective in microenvironment improvement and </span>nerve regeneration. Our study showed that the pDA-Gel-encapsulated so-exos allowed rapid improvement of the impaired motor function and alleviation of urination dysfunction by modulating the spinal inflammatory and oxidative conditions, thus illustrating a potential SCI treatment through a combinational delivery of so-exos.</span></p></div>","PeriodicalId":396,"journal":{"name":"Nanomedicine: Nanotechnology, Biology and Medicine","volume":"47 ","pages":"Article 102625"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomedicine: Nanotechnology, Biology and Medicine","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1549963422001113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 6

Abstract

Spinal cord injury (SCI) is a severe traumatic disease because of its complications and multi-organ dysfunction. After the injury, the disruption of microenvironment homeostasis in the lesion demolishes the surrounding healthy tissues via various pathways. The microenvironment regulation is beneficial for neural and functional recovery. Sustained release, cellular uptake, and long-term retention of therapeutic molecules at the impaired sites are important for continuous microenvironment improvement. In our study, a local-implantation system was constructed for SCI treatment by encapsulating exosomes derived from Flos Sophorae Immaturus (so-exos) in a polydopamine-modified hydrogel (pDA-Gel). So-exos are used as nanoscale natural vehicles of rutin, a flavonoid phytochemical that is effective in microenvironment improvement and nerve regeneration. Our study showed that the pDA-Gel-encapsulated so-exos allowed rapid improvement of the impaired motor function and alleviation of urination dysfunction by modulating the spinal inflammatory and oxidative conditions, thus illustrating a potential SCI treatment through a combinational delivery of so-exos.

Abstract Image

抗氧化苦参外泌体包被水凝胶通过调节氧化应激微环境促进脊髓修复
脊髓损伤是一种严重的外伤性疾病,其并发症多,多器官功能紊乱。损伤后,病变微环境稳态的破坏通过多种途径破坏周围的健康组织。微环境调节有利于神经和功能的恢复。持续释放、细胞摄取和治疗分子在受损部位的长期保留对于持续的微环境改善是重要的。在我们的研究中,通过将来自Sophorae Immaturus (so-exos)的外泌体包埋在聚多巴胺修饰的水凝胶(da - gel)中,构建了局部植入系统来治疗SCI。so -exo被用作芦丁的纳米级天然载体,芦丁是一种黄酮类植物化学物质,在微环境改善和神经再生中有效。我们的研究表明,pda凝胶包封的so-exos可以通过调节脊柱炎症和氧化条件来快速改善受损的运动功能和减轻排尿功能障碍,从而表明通过联合递送so-exos可能治疗SCI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
3.60%
发文量
104
审稿时长
4.6 months
期刊介绍: Nanomedicine: Nanotechnology, Biology and Medicine (NBM) is an international, peer-reviewed journal presenting novel, significant, and interdisciplinary theoretical and experimental results related to nanoscience and nanotechnology in the life and health sciences. Content includes basic, translational, and clinical research addressing diagnosis, treatment, monitoring, prediction, and prevention of diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信