{"title":"Keratinocyte growth factor in focus: A comprehensive review from structural and functional aspects to therapeutic applications of palifermin","authors":"Solmaz Sadeghi , Hourieh Kalhor , Mohammad Panahi , Hoda Abolhasani , Bahareh Rahimi , Reyhaneh Kalhor , Amirmehdi Mehrabi , Mahsa Vahdatinia , Hamzeh Rahimi","doi":"10.1016/j.ijbiomac.2021.09.151","DOIUrl":null,"url":null,"abstract":"<div><p>Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813021020833","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Palifermin (Kepivance™) is the first therapeutic approved by the Food and Drug Administration for preventing and managing the oral mucositis provoked by myelotoxic and mucotoxic therapies. Palifermin is a recombinant protein generated from human keratinocyte growth factor (KGF) and imitates the function of endogenous KGF. KGF is an epithelial mitogen involved in various biological processes which belongs to the FGF family. KGF possesses a high level of receptor specificity and plays an important role in tissue repair and maintaining of the mucosal barrier integrity. Based on these unique features, palifermin was developed to enhance the growth of damaged epithelial tissues. Administration of palifermin has shown success in the reduction of toxicities of chemotherapy and radiotherapy, and improvement of the patient's quality of life. Notwithstanding all merits, the clinical application of palifermin is limited owing to its instability and production challenges. Hence, a growing number of ongoing researches are designed to deal with these problems and enhance the physicochemical and pharmaceutical properties of palifermin. In the current review, we discuss KGF structure and function, potential therapeutic applications of palifermin, as well as the latest progress in the production of recombinant human KGF and its challenges ahead.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.