Yimei Zheng , Yu Chang , Biying Luo , Hui Teng , Lei Chen
{"title":"Molecular structure modification of ovalbumin through controlled glycosylation with dextran for its emulsibility improvement","authors":"Yimei Zheng , Yu Chang , Biying Luo , Hui Teng , Lei Chen","doi":"10.1016/j.ijbiomac.2021.11.130","DOIUrl":null,"url":null,"abstract":"<div><p>Ovalbumin (OVA) is a high nutritious protein, but the poor emulsibility limited its application. The present study glycosylated OVA with dextran (Dex) by controlled wetheating (60–90 °C for 3 h). Temperature was an inductive factor for glycosylation degree (DG and browning intensity), and higher temperature could accelerate the reaction. Variations in molecular structure of OVA were analyzed by SDS-PAGE, FTIR, fluorescence spectroscopy and UV spectroscopy, which verified successes in the generation of glycoconjugate with more flexible structure. Emulsifying activity index (EAI) and emulsion stability index (ESI) for the emulsion of OVA-Dex glycoconjugates were significantly enhanced with the increasing of glycosylation temperature. Moreover, confocal laser scanning results revealed that the emulsion exhibited smaller size and more uniform distribution, and slower transmission profiles were checked by LUMiSizer centrifugal analysis as well, confirming the emulsibility improvement of OVA. Thus, controlled glycosylation reaction is an available method to improve the emulsifying properties of OVA.</p></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"194 ","pages":"Pages 1-8"},"PeriodicalIF":8.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813021025356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 25
Abstract
Ovalbumin (OVA) is a high nutritious protein, but the poor emulsibility limited its application. The present study glycosylated OVA with dextran (Dex) by controlled wetheating (60–90 °C for 3 h). Temperature was an inductive factor for glycosylation degree (DG and browning intensity), and higher temperature could accelerate the reaction. Variations in molecular structure of OVA were analyzed by SDS-PAGE, FTIR, fluorescence spectroscopy and UV spectroscopy, which verified successes in the generation of glycoconjugate with more flexible structure. Emulsifying activity index (EAI) and emulsion stability index (ESI) for the emulsion of OVA-Dex glycoconjugates were significantly enhanced with the increasing of glycosylation temperature. Moreover, confocal laser scanning results revealed that the emulsion exhibited smaller size and more uniform distribution, and slower transmission profiles were checked by LUMiSizer centrifugal analysis as well, confirming the emulsibility improvement of OVA. Thus, controlled glycosylation reaction is an available method to improve the emulsifying properties of OVA.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.