Long Ji , Xuan Zheng , Long Zhang , Liang Feng , Kangkang Li , Hai Yu , Shuiping Yan
{"title":"Feasibility and mechanism of an amine-looping process for efficient CO2 mineralization using alkaline ashes","authors":"Long Ji , Xuan Zheng , Long Zhang , Liang Feng , Kangkang Li , Hai Yu , Shuiping Yan","doi":"10.1016/j.cej.2021.133118","DOIUrl":null,"url":null,"abstract":"<div><p>Amine-looping-based CO<sub>2</sub> mineralization is a promising technology for simultaneous CO<sub>2</sub> absorption, mineralization, and carbonate crystallization in a single step. This paper performed a detailed investigation of the feasibility and underlying mechanism of the amine-looping process using industrial alkaline solid wastes, including one Biomass ash (BA) and two coal-fired fly ashes named FA1 and FA2. The CO<sub>2</sub> sequestration capacity and CO<sub>2</sub> removal efficiency of selected ashes were investigated in five typical amine solutions, including monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), 2-amino-2-methy-1-propanol (AMP), and piperazine (PZ). The physicochemical property of ashes before and after carbonation and the dissolution of alkaline minerals in various amine solutions were systematically determined to explore the underlying mechanism involved in the amine-looping process. Results show that greater improvement in CO<sub>2</sub> removal efficiencies and CO<sub>2</sub> sequestration capacities were obtained by selected ashes in amine solutions compared to the traditional CO<sub>2</sub> mineralization in the water-ash-CO<sub>2</sub> system. It also revealed that amines played important roles in promoting CO<sub>2</sub> mass transfer, enhancing Ca<sup>2+</sup> leaching, and producing small-sized CaCO<sub>3</sub>. The largest CO<sub>2</sub> sequestration capacity (102.9 g/kg) was achieved by FA1 in PZ solution which was suggested as the preferred solvent for the amine-looping process. In addition, the environmental risk of carbonated ashes for agricultural application in terms of amine loss and phytotoxicity was evaluated. Results implied that the phytotoxicity of carbonated BA could be neglected when a simple centrifugal wash was used to remove the absorbed amine on the surface of carbonated BA whilst the phytotoxicity of selected ashes can be significantly reduced after carbonation reactions.</p></div>","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"430 ","pages":"Article 133118"},"PeriodicalIF":13.2000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385894721046945","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 15
Abstract
Amine-looping-based CO2 mineralization is a promising technology for simultaneous CO2 absorption, mineralization, and carbonate crystallization in a single step. This paper performed a detailed investigation of the feasibility and underlying mechanism of the amine-looping process using industrial alkaline solid wastes, including one Biomass ash (BA) and two coal-fired fly ashes named FA1 and FA2. The CO2 sequestration capacity and CO2 removal efficiency of selected ashes were investigated in five typical amine solutions, including monoethanolamine (MEA), diethanolamine (DEA), triethanolamine (TEA), 2-amino-2-methy-1-propanol (AMP), and piperazine (PZ). The physicochemical property of ashes before and after carbonation and the dissolution of alkaline minerals in various amine solutions were systematically determined to explore the underlying mechanism involved in the amine-looping process. Results show that greater improvement in CO2 removal efficiencies and CO2 sequestration capacities were obtained by selected ashes in amine solutions compared to the traditional CO2 mineralization in the water-ash-CO2 system. It also revealed that amines played important roles in promoting CO2 mass transfer, enhancing Ca2+ leaching, and producing small-sized CaCO3. The largest CO2 sequestration capacity (102.9 g/kg) was achieved by FA1 in PZ solution which was suggested as the preferred solvent for the amine-looping process. In addition, the environmental risk of carbonated ashes for agricultural application in terms of amine loss and phytotoxicity was evaluated. Results implied that the phytotoxicity of carbonated BA could be neglected when a simple centrifugal wash was used to remove the absorbed amine on the surface of carbonated BA whilst the phytotoxicity of selected ashes can be significantly reduced after carbonation reactions.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.