{"title":"Interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates","authors":"Gang He , Xiaoshuang Chen , Zhaoqi Sun","doi":"10.1016/j.surfrep.2013.01.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span><span>Recently, III–V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III–V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low </span>interface trap densities. Due to their excellent thermal stability and relatively high </span>dielectric constants, Hf-based high-k gate </span>dielectrics have been recently highlighted as the most promising high-k dielectrics for III–V-based devices. This paper provides an overview of interface engineering and </span>chemistry<span> of Hf-based high-k dielectrics on III–V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium<span><span> based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without </span>Fermi level<span><span> pinning, surface passivation<span> and interface state, and integration of novel device structure with </span></span>Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":"68 1","pages":"Pages 68-107"},"PeriodicalIF":8.2000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2013.01.002","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572913000034","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 182
Abstract
Recently, III–V materials have been extensively studied as potential candidates for post-Si complementary metal-oxide-semiconductor (CMOS) channel materials. The main obstacle to implement III–V compound semiconductors for CMOS applications is the lack of high quality and thermodynamically stable insulators with low interface trap densities. Due to their excellent thermal stability and relatively high dielectric constants, Hf-based high-k gate dielectrics have been recently highlighted as the most promising high-k dielectrics for III–V-based devices. This paper provides an overview of interface engineering and chemistry of Hf-based high-k dielectrics on III–V substrates. We begin with a survey of methods developed for generating Hf-based high-k gate dielectrics. To address the impact of these hafnium based materials, their interfaces with GaAs as well as a variety of semiconductors are discussed. After that, the integration issues are highlighted, including the development of high-k deposition without Fermi level pinning, surface passivation and interface state, and integration of novel device structure with Si technology. Finally, we conclude this review with the perspectives and outlook on the future developments in this area. This review explores the possible influences of research breakthroughs of Hf-based gate dielectrics on the current and future applications for nano-MOSFET devices.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.