R. Bergamaschini , F. Isa , C.V. Falub , P. Niedermann , E. Müller , G. Isella , H. von Känel , L. Miglio
{"title":"Self-aligned Ge and SiGe three-dimensional epitaxy on dense Si pillar arrays","authors":"R. Bergamaschini , F. Isa , C.V. Falub , P. Niedermann , E. Müller , G. Isella , H. von Känel , L. Miglio","doi":"10.1016/j.surfrep.2013.10.002","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>In this report we present a novel strategy in selective epitaxial growth on top of Si pillars, which results in a tessellated Ge film, composed by self-aligned micron-sized crystals in a maskless process. Modelling by </span>rate equations<span><span> the morphology evolution of fully facetted crystal profiles is extensively outlined, showing an excellent prediction of the peculiar role played by flux shielding among microcrystals, in the case of dense array configuration. </span>Crack formation<span> and substrate bending, caused by the mismatch in thermal expansion coefficients, are eliminated by the mechanical decoupling among individual microcrystals, which are also shown to be dislocation- and strain-free. The method has been also tested for Si</span></span></span><sub>1−<em>x</em></sub>Ge<sub><em>x</em></sub><span><span><span> alloys, with compositions<span> ranging from pure </span></span>silicon to pure </span>germanium. There are ample reasons to believe that this approach could be extended to other material combinations and substrate orientations, actually providing a technology platform for several device applications.</span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2013.10.002","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016757291300023X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 40
Abstract
In this report we present a novel strategy in selective epitaxial growth on top of Si pillars, which results in a tessellated Ge film, composed by self-aligned micron-sized crystals in a maskless process. Modelling by rate equations the morphology evolution of fully facetted crystal profiles is extensively outlined, showing an excellent prediction of the peculiar role played by flux shielding among microcrystals, in the case of dense array configuration. Crack formation and substrate bending, caused by the mismatch in thermal expansion coefficients, are eliminated by the mechanical decoupling among individual microcrystals, which are also shown to be dislocation- and strain-free. The method has been also tested for Si1−xGex alloys, with compositions ranging from pure silicon to pure germanium. There are ample reasons to believe that this approach could be extended to other material combinations and substrate orientations, actually providing a technology platform for several device applications.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.