{"title":"Local structure determination in strained-layer semiconductors","authors":"Joseph C. Woicik","doi":"10.1016/j.surfrep.2013.12.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress </span><span>[1]</span>. In this review, we examine the <em>internal</em><span> mechanisms of elasticity for strained-layer semiconductor heterostructures<span>. In particular, we present extended x-ray-absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how the bond lengths and bond angles<span> in semiconductor thin-alloy films change with strain when they are grown coherently on substrates with different lattice constants. The structural distortions measured by experiment are compared to valence-force field (VFF) calculations and other theoretical models. Atomic switching and interfacial strain at buried interfaces are also discussed.</span></span></span></p></div>","PeriodicalId":434,"journal":{"name":"Surface Science Reports","volume":null,"pages":null},"PeriodicalIF":8.2000,"publicationDate":"2014-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.surfrep.2013.12.002","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Science Reports","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167572913000356","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 7
Abstract
The theory of elasticity accurately describes the deformations of macroscopic bodies under the action of applied stress [1]. In this review, we examine the internal mechanisms of elasticity for strained-layer semiconductor heterostructures. In particular, we present extended x-ray-absorption fine structure (EXAFS) and x-ray diffraction (XRD) measurements to show how the bond lengths and bond angles in semiconductor thin-alloy films change with strain when they are grown coherently on substrates with different lattice constants. The structural distortions measured by experiment are compared to valence-force field (VFF) calculations and other theoretical models. Atomic switching and interfacial strain at buried interfaces are also discussed.
期刊介绍:
Surface Science Reports is a journal that specializes in invited review papers on experimental and theoretical studies in the physics, chemistry, and pioneering applications of surfaces, interfaces, and nanostructures. The topics covered in the journal aim to contribute to a better understanding of the fundamental phenomena that occur on surfaces and interfaces, as well as the application of this knowledge to the development of materials, processes, and devices. In this journal, the term "surfaces" encompasses all interfaces between solids, liquids, polymers, biomaterials, nanostructures, soft matter, gases, and vacuum. Additionally, the journal includes reviews of experimental techniques and methods used to characterize surfaces and surface processes, such as those based on the interactions of photons, electrons, and ions with surfaces.