A. Zilges , D.L. Balabanski , J. Isaak , N. Pietralla
{"title":"Photonuclear reactions—From basic research to applications","authors":"A. Zilges , D.L. Balabanski , J. Isaak , N. Pietralla","doi":"10.1016/j.ppnp.2021.103903","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Nuclear reactions induced by photons play a vital role for very different aspects of basic research and applications in physics. They are a key ingredient for the synthesis of nuclei in the Universe and provide, due to the </span>selectivity and the model-independence of the reaction mechanism, an extremely valuable probe for researchers. The penetrability of photons in the MeV energy range makes them, in addition, an ideal tool for meeting various societal challenges. The last two decades saw a rapid development of advanced photon sources and detection methods for </span>photonuclear reaction<span><span> products. Bremsstrahlung and quasi-monoenergetic </span>photon beams with unprecedented intensity and quality combined with state-of-the-art detector technology paved the way for new scientific discoveries and technological applications.</span></p><p>This review focuses on a comprehensive overview of the most important developments since the turn of the millennium restricted to the energy range between atomic and hadronic degrees of freedom. This includes a description of the formalism of photonuclear reactions below and above the particle-separation threshold. The most important techniques used to generate photon beams in the MeV energy range are presented along with selected facilities and instrumentation for diagnostics and for the analysis of photonuclear reactions. The power of photons to probe the atomic nucleus is exemplified in a number of selected examples from fundamental and applied science. New developments, facilities, and ideas promise a vivid future for photonuclear physics.</p></div>","PeriodicalId":412,"journal":{"name":"Progress in Particle and Nuclear Physics","volume":"122 ","pages":"Article 103903"},"PeriodicalIF":14.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Particle and Nuclear Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0146641021000624","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 40
Abstract
Nuclear reactions induced by photons play a vital role for very different aspects of basic research and applications in physics. They are a key ingredient for the synthesis of nuclei in the Universe and provide, due to the selectivity and the model-independence of the reaction mechanism, an extremely valuable probe for researchers. The penetrability of photons in the MeV energy range makes them, in addition, an ideal tool for meeting various societal challenges. The last two decades saw a rapid development of advanced photon sources and detection methods for photonuclear reaction products. Bremsstrahlung and quasi-monoenergetic photon beams with unprecedented intensity and quality combined with state-of-the-art detector technology paved the way for new scientific discoveries and technological applications.
This review focuses on a comprehensive overview of the most important developments since the turn of the millennium restricted to the energy range between atomic and hadronic degrees of freedom. This includes a description of the formalism of photonuclear reactions below and above the particle-separation threshold. The most important techniques used to generate photon beams in the MeV energy range are presented along with selected facilities and instrumentation for diagnostics and for the analysis of photonuclear reactions. The power of photons to probe the atomic nucleus is exemplified in a number of selected examples from fundamental and applied science. New developments, facilities, and ideas promise a vivid future for photonuclear physics.
期刊介绍:
Taking the format of four issues per year, the journal Progress in Particle and Nuclear Physics aims to discuss new developments in the field at a level suitable for the general nuclear and particle physicist and, in greater technical depth, to explore the most important advances in these areas. Most of the articles will be in one of the fields of nuclear physics, hadron physics, heavy ion physics, particle physics, as well as astrophysics and cosmology. A particular effort is made to treat topics of an interface type for which both particle and nuclear physics are important. Related topics such as detector physics, accelerator physics or the application of nuclear physics in the medical and archaeological fields will also be treated from time to time.