Dongjie Shang , Lizi Tang , Xin Fang , Lifan Wang , Suding Yang , Zhijun Wu , Shiyi Chen , Xin Li , Limin Zeng , Song Guo , Min Hu
{"title":"Variations in source contributions of particle number concentration under long-term emission control in winter of urban Beijing","authors":"Dongjie Shang , Lizi Tang , Xin Fang , Lifan Wang , Suding Yang , Zhijun Wu , Shiyi Chen , Xin Li , Limin Zeng , Song Guo , Min Hu","doi":"10.1016/j.envpol.2022.119072","DOIUrl":null,"url":null,"abstract":"<div><p>Many studies revealed the rapid decline of atmospheric PM<sub>2.5</sub> in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3–700 nm in winter of Beijing during 2013–2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as <em>Nucleation</em>, <em>Fresh traffic</em>, <span><em>Aged traffic + </em><em>Diesel</em></span>, <span><em>Coal + </em><em>biomass burning</em></span> and <em>Secondary</em>. Overall, factors associated with primary emissions were found to decrease continuously. <em>Coal + biomass burning</em><span> dominated the reduction (65%) among the three primary sources during 2013–2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. </span><em>Fresh traffic</em> and <em>Aged traffic + Diesel</em> decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from <em>Nucleation</em> and <em>Secondary</em> decreased with the reduction of gaseous precursors in 2013–2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.</p></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"304 ","pages":"Article 119072"},"PeriodicalIF":7.6000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026974912200286X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 6
Abstract
Many studies revealed the rapid decline of atmospheric PM2.5 in Beijing due to the emission control measures. The variation of particle number concentration (PN) which has important influences on regional climate and human health, however, was rarely reported. This study measured the particle number size distributions (PNSD) in 3–700 nm in winter of Beijing during 2013–2019. It was found that PN decreased by 58% from 2013 to 2017, but increased by 29% from 2017 to 2019. By Positive matrix factorization (PMF) analysis, five source factors of PNSD were identified as Nucleation, Fresh traffic, Aged traffic + Diesel, Coal + biomass burning and Secondary. Overall, factors associated with primary emissions were found to decrease continuously. Coal + biomass burning dominated the reduction (65%) among the three primary sources during 2013–2017, which resulted from the great efforts on emission control of coal combustion and biomass burning. Fresh traffic and Aged traffic + Diesel decreased by 43% and 66%, respectively, from 2013 to 2019, as a result of the upgrade of the vehicle emission standards in Beijing-Tianjin-Hebei area. On the other hand, the contribution from Nucleation and Secondary decreased with the reduction of gaseous precursors in 2013–2017, but due to the increased intensity of new particle formation (NPF) and secondary oxidation, they increased by 56% and 70%, respectively, from 2017 to 2019, which led to the simultaneously increase of PN and particle volume concentration. This study indicated that NPF may play an important role in urban atmosphere under continuous air quality improvement.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.