Zixiang Weng , Yu Zhou , Wenxiong Lin , T. Senthil , Lixin Wu
{"title":"Structure-property relationship of nano enhanced stereolithography resin for desktop SLA 3D printer","authors":"Zixiang Weng , Yu Zhou , Wenxiong Lin , T. Senthil , Lixin Wu","doi":"10.1016/j.compositesa.2016.05.035","DOIUrl":null,"url":null,"abstract":"<div><p>Organically modified nanofillers, including nano SiO<sub>2</sub><span><span>, montmorillonite and attapulgite were loaded to </span>stereolithography resin (SLR). The surface of nanofillers were modified using organic modifier of 3-(trimethoxysilyl)propyl methacrylate (γ-MPS) and (1-hexadecyl)dimethyl allyl ammonium chloride (C</span><sub>16</sub><span><span><span>-DMAAC), and were characterized by FTIR and small angle XRD analysis. The morphology of nanocomposites were observed by TEM. Viscosity and curing speed of SLR nanocomposites at increasing nanofillers loading were also studied. The </span>mechanical properties of printed samples fabricated by a home-made stereolithography apparatus (SLA) 3D printer were tested. The influence of </span>nanoparticles on the accuracy was measured and discussed. It was found that addition of 5% w/w of nano SiO</span><sub>2</sub><span><span> increased the tensile strength and modulus by 20.6% and 65.1% respectively, and the printed accuracy was not significantly influenced. This study opens the way to the application of nanocomposites in the desktop level SLA </span>3D printing.</span></p></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"88 ","pages":"Pages 234-242"},"PeriodicalIF":8.1000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.compositesa.2016.05.035","citationCount":"160","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X16301725","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 160
Abstract
Organically modified nanofillers, including nano SiO2, montmorillonite and attapulgite were loaded to stereolithography resin (SLR). The surface of nanofillers were modified using organic modifier of 3-(trimethoxysilyl)propyl methacrylate (γ-MPS) and (1-hexadecyl)dimethyl allyl ammonium chloride (C16-DMAAC), and were characterized by FTIR and small angle XRD analysis. The morphology of nanocomposites were observed by TEM. Viscosity and curing speed of SLR nanocomposites at increasing nanofillers loading were also studied. The mechanical properties of printed samples fabricated by a home-made stereolithography apparatus (SLA) 3D printer were tested. The influence of nanoparticles on the accuracy was measured and discussed. It was found that addition of 5% w/w of nano SiO2 increased the tensile strength and modulus by 20.6% and 65.1% respectively, and the printed accuracy was not significantly influenced. This study opens the way to the application of nanocomposites in the desktop level SLA 3D printing.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.