Nathalie H Gosselin, Robert C Brunet, Gaétan Carrier
{"title":"Comparative occupational exposures to formaldehyde released from inhaled wood product dusts versus that in vapor form.","authors":"Nathalie H Gosselin, Robert C Brunet, Gaétan Carrier","doi":"10.1080/10473220301371","DOIUrl":null,"url":null,"abstract":"<p><p>Particle boards and other wood boards are usually made with formaldehyde-based resins. Woodworkers are thus exposed to formaldehyde in vapor form as well as from airborne dust once it enters their respiratory tract. These workers remain exposed to formaldehyde released from the dust still present in their upper respiratory tract, even after their work shift. In assessing the risk associated with formaldehyde exposure, one needs to consider the relative importance of these two sources of exposure. This study proposes two kinetic models to estimate and compare the exposures. For various exposure scenarios, one model predicts the amount of formaldehyde absorbed from the ambient vapor form and the other predicts the amount absorbed by the respiratory tract upon its release from wood product dust. Model parameters are determined using data from published studies. Based on a daily work shift of 8 hr, with a dust concentration in air of 5 mg/m(3) and a formaldehyde concentration bound to dust of 9 microg/mg, model simulations predict that the amount of absorbed formaldehyde released from wood dust is approximately 1/100 of the amount absorbed from the ambient vapor form at a concentration level of 0.38 mg/m(3) (0.3 ppm). Since the formaldehyde concentration in wood dust used above is much higher than usually observed while the dust and vapor form formaldehyde concentrations are of the order of acceptable upper values, these results indicate that the formaldehyde exposure from wood dust is comparatively negligible.</p>","PeriodicalId":8182,"journal":{"name":"Applied occupational and environmental hygiene","volume":"18 5","pages":"384-93"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10473220301371","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied occupational and environmental hygiene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10473220301371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Particle boards and other wood boards are usually made with formaldehyde-based resins. Woodworkers are thus exposed to formaldehyde in vapor form as well as from airborne dust once it enters their respiratory tract. These workers remain exposed to formaldehyde released from the dust still present in their upper respiratory tract, even after their work shift. In assessing the risk associated with formaldehyde exposure, one needs to consider the relative importance of these two sources of exposure. This study proposes two kinetic models to estimate and compare the exposures. For various exposure scenarios, one model predicts the amount of formaldehyde absorbed from the ambient vapor form and the other predicts the amount absorbed by the respiratory tract upon its release from wood product dust. Model parameters are determined using data from published studies. Based on a daily work shift of 8 hr, with a dust concentration in air of 5 mg/m(3) and a formaldehyde concentration bound to dust of 9 microg/mg, model simulations predict that the amount of absorbed formaldehyde released from wood dust is approximately 1/100 of the amount absorbed from the ambient vapor form at a concentration level of 0.38 mg/m(3) (0.3 ppm). Since the formaldehyde concentration in wood dust used above is much higher than usually observed while the dust and vapor form formaldehyde concentrations are of the order of acceptable upper values, these results indicate that the formaldehyde exposure from wood dust is comparatively negligible.