{"title":"Comparative study of anti-drift nozzles' wear.","authors":"G Bolly, B Huyghebaert, O Mostade, R Oger","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>When spraying, the drift is a restricting factor which reduces the efficiency of pesticides treatments and increases their impact on the environment. The use of anti-drift nozzles is the most common technique to reduce the drift effect. The basic principle of all anti-drift nozzles is to produce bigger droplets (Imag DLO, 1999) being less sensitive to the wind. The increase of the droplets' size is possible whether by reducing the spraying pressure (anti-drift fan nozzle) or by injecting air in the nozzle (air injection nozzles). This study aims at comparing the performances of the main anti-drift nozzles available on the Belgian market (Teejet DG and AI, Albuz ADI and AVI, Hardi ISO LD et AI). The study made it possible to compare thirteen different nozzles' sets according to their trademark, type and material. The study is based on the analysis of macroscopic parameters (flowrate, transversal distribution and individual distribution) as well as on the analysis of microscopic parameters (spraying deposit on artificial target). The evolution of these parameters is analysed according to the nozzle's wear. The wear is carried out artificially according to the \"ISO 5682-1\" standard (ISO 5682-1, 1996). The results confirmed the major influence of the manufacturing material on the nozzles' wear, ceramic being the most resistant material. Macroscopic as well as microscopic parameters variated according to the utilization time without any direct correlation. Indeed, most parameters variate in an uncertain way. It was however possible to establish a correlation between the wear time and the recovering rate and flowrate parameters. The utilization length is different depending on the type of nozzle, air injection nozzles being more resistant. At last, the analysis of microscopic parameters (spraying deposit) (Degré A., 1999), shows that the number of impacts is stable depending on the wear, while the size of impacts and the recovering rate increase.</p>","PeriodicalId":85134,"journal":{"name":"Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen)","volume":"67 2","pages":"29-35"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mededelingen (Rijksuniversiteit te Gent. Fakulteit van de Landbouwkundige en Toegepaste Biologische Wetenschappen)","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
When spraying, the drift is a restricting factor which reduces the efficiency of pesticides treatments and increases their impact on the environment. The use of anti-drift nozzles is the most common technique to reduce the drift effect. The basic principle of all anti-drift nozzles is to produce bigger droplets (Imag DLO, 1999) being less sensitive to the wind. The increase of the droplets' size is possible whether by reducing the spraying pressure (anti-drift fan nozzle) or by injecting air in the nozzle (air injection nozzles). This study aims at comparing the performances of the main anti-drift nozzles available on the Belgian market (Teejet DG and AI, Albuz ADI and AVI, Hardi ISO LD et AI). The study made it possible to compare thirteen different nozzles' sets according to their trademark, type and material. The study is based on the analysis of macroscopic parameters (flowrate, transversal distribution and individual distribution) as well as on the analysis of microscopic parameters (spraying deposit on artificial target). The evolution of these parameters is analysed according to the nozzle's wear. The wear is carried out artificially according to the "ISO 5682-1" standard (ISO 5682-1, 1996). The results confirmed the major influence of the manufacturing material on the nozzles' wear, ceramic being the most resistant material. Macroscopic as well as microscopic parameters variated according to the utilization time without any direct correlation. Indeed, most parameters variate in an uncertain way. It was however possible to establish a correlation between the wear time and the recovering rate and flowrate parameters. The utilization length is different depending on the type of nozzle, air injection nozzles being more resistant. At last, the analysis of microscopic parameters (spraying deposit) (Degré A., 1999), shows that the number of impacts is stable depending on the wear, while the size of impacts and the recovering rate increase.