{"title":"Angiogenesis and vascular remodeling by intussusception: from form to function.","authors":"Haymo Kurz, Peter H Burri, Valentin G Djonov","doi":"10.1152/nips.01417.2002","DOIUrl":null,"url":null,"abstract":"<p><p>During most instances of angiogenesis, not only are the capillaries or terminal vessels generated and modified, but the supplying vascular system is subjected to remodeling as well. Intussusception, i.e., transluminal pillar formation, is one essential mechanism for growth, arborization, bifurcation remodeling, and pruning. Complex and efficient vascular beds can thus be generated by local interactions between vascular cells and hemodynamic conditions.</p>","PeriodicalId":82140,"journal":{"name":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","volume":"18 ","pages":"65-70"},"PeriodicalIF":0.0000,"publicationDate":"2003-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1152/nips.01417.2002","citationCount":"184","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1152/nips.01417.2002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 184
Abstract
During most instances of angiogenesis, not only are the capillaries or terminal vessels generated and modified, but the supplying vascular system is subjected to remodeling as well. Intussusception, i.e., transluminal pillar formation, is one essential mechanism for growth, arborization, bifurcation remodeling, and pruning. Complex and efficient vascular beds can thus be generated by local interactions between vascular cells and hemodynamic conditions.