Functional enhancement of electrofusion-derived BRIN-BD11 insulin-secreting cells after implantation into diabetic mice.

E L Davies, Y H Abdel-Wahab, P R Flatt, C J Bailey
{"title":"Functional enhancement of electrofusion-derived BRIN-BD11 insulin-secreting cells after implantation into diabetic mice.","authors":"E L Davies,&nbsp;Y H Abdel-Wahab,&nbsp;P R Flatt,&nbsp;C J Bailey","doi":"10.1155/edr.2001.29","DOIUrl":null,"url":null,"abstract":"<p><p>Electrofusion-derived BRIN-BD11 cells are glucose-sensitive insulin-secreting cells which provide an archetypal bioengineered surrogate beta-cell for insulin replacement therapy in diabetes mellitus. 5x10(6) BRIN-BD11 cells were implanted intraperitoneally into severely hyperglycaemic (>24 mmol/l) streptozotocin-induced insulin-treated diabetic athymic nude (nu/nu) mice. The implants reduced hyperglycaemia such that insulin injections were discontinued by 5-16 days (<17 mmol/l) and normoglycaemia (<9 mmol/l) was achieved by 7-20 days. Implanted cells were removed after 28 days and re-established in culture. After re-culture for 20 days, glucose-stimulated (16.7 mmol/l) insulin release was enhanced by 121% (p<0.001) compared to non-implanted cells. Insulin responses to glucagon-like peptide-1 (10(-9) mol/l), cholecystokinin-8 (10(-8) mol/l) and L-alanine (10 mmol/l) were increased by 32%, 31% and 68% respectively (p<0.05-0.01). Insulin content of the cells was 148% greater at 20 days after re-culture than before implantation (p<0.001), but basal insulin release (at 5.6 mmol/l glucose) was not changed. After re-culture for 40 days, insulin content declined to 68% of the content before implantation (p<0.01), although basal insulin release was unchanged. However, the insulin secretory responses to glucose, glucagon-like peptide-1, cholecystokinin-8 and L-alanine were decreased after 40 days of re-culture to 65%, 72%, 73% and 42% respectively of the values before implantation (p<0.05-0.01). The functional enhancement of electrofusion-derived surrogate beta-cells that were re-cultured for 20 days after implantation and restoration of normoglycaemia indicates that the in vivo environment could greatly assist beta-cell engineering approaches to therapy for diabetes.</p>","PeriodicalId":14040,"journal":{"name":"International journal of experimental diabetes research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/edr.2001.29","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of experimental diabetes research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/edr.2001.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Electrofusion-derived BRIN-BD11 cells are glucose-sensitive insulin-secreting cells which provide an archetypal bioengineered surrogate beta-cell for insulin replacement therapy in diabetes mellitus. 5x10(6) BRIN-BD11 cells were implanted intraperitoneally into severely hyperglycaemic (>24 mmol/l) streptozotocin-induced insulin-treated diabetic athymic nude (nu/nu) mice. The implants reduced hyperglycaemia such that insulin injections were discontinued by 5-16 days (<17 mmol/l) and normoglycaemia (<9 mmol/l) was achieved by 7-20 days. Implanted cells were removed after 28 days and re-established in culture. After re-culture for 20 days, glucose-stimulated (16.7 mmol/l) insulin release was enhanced by 121% (p<0.001) compared to non-implanted cells. Insulin responses to glucagon-like peptide-1 (10(-9) mol/l), cholecystokinin-8 (10(-8) mol/l) and L-alanine (10 mmol/l) were increased by 32%, 31% and 68% respectively (p<0.05-0.01). Insulin content of the cells was 148% greater at 20 days after re-culture than before implantation (p<0.001), but basal insulin release (at 5.6 mmol/l glucose) was not changed. After re-culture for 40 days, insulin content declined to 68% of the content before implantation (p<0.01), although basal insulin release was unchanged. However, the insulin secretory responses to glucose, glucagon-like peptide-1, cholecystokinin-8 and L-alanine were decreased after 40 days of re-culture to 65%, 72%, 73% and 42% respectively of the values before implantation (p<0.05-0.01). The functional enhancement of electrofusion-derived surrogate beta-cells that were re-cultured for 20 days after implantation and restoration of normoglycaemia indicates that the in vivo environment could greatly assist beta-cell engineering approaches to therapy for diabetes.

脑电融合衍生的BRIN-BD11胰岛素分泌细胞植入糖尿病小鼠后的功能增强。
电融合衍生的BRIN-BD11细胞是葡萄糖敏感的胰岛素分泌细胞,为糖尿病的胰岛素替代治疗提供了一种典型的生物工程替代β细胞。将5 × 10(6) BRIN-BD11细胞腹腔植入严重高血糖(>24 mmol/l)链脲霉素诱导的胰岛素处理的糖尿病裸鼠(nu/nu)。植入物降低了高血糖,因此胰岛素注射停止了5-16天(
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信