Adrian Kania , Maciej Bratek , Jan Majta , Krzysztof Sarapata , Wojciech Gałan , Michał Markiewicz , Anna Wójcik-Augustyn
{"title":"The importance of atomic partial charges in the reproduction of intermolecular interactions for the triacetin - a model of glycerol backbone","authors":"Adrian Kania , Maciej Bratek , Jan Majta , Krzysztof Sarapata , Wojciech Gałan , Michał Markiewicz , Anna Wójcik-Augustyn","doi":"10.1016/j.chemphyslip.2022.105203","DOIUrl":null,"url":null,"abstract":"<div><p><span>Lipids play a central role within the cell. They not only encompass it but are also engaged in many processes such as cellular transport and energy production. Despite ongoing advances in experimental studies, computer simulations are a viable method to trace their behavior at the atomic level and on an elusive time scale. In </span>molecular modeling<span><span> studies, the quality of the obtained results is associated with the considered force field and its parameters. In the present work, the authors have investigated the procedure of partial charges fitting on the example of a triacetin molecule, containing chemical moieties present in the glycerol backbone. The goal of the study was to validate assigned partial charges based on the quality of the torsion profiles using optimally assigned torsional coefficients and reproduction of the condensed phase properties of triacetin. We applied various approaches and noticed a significant improvement in the parameterization of triacetin compared to the original one. The results showed that it is important to take into account the </span>intermolecular interactions in the partial charges fitting procedure to obtain good quality validation results.</span></p></div>","PeriodicalId":275,"journal":{"name":"Chemistry and Physics of Lipids","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Physics of Lipids","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009308422000317","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipids play a central role within the cell. They not only encompass it but are also engaged in many processes such as cellular transport and energy production. Despite ongoing advances in experimental studies, computer simulations are a viable method to trace their behavior at the atomic level and on an elusive time scale. In molecular modeling studies, the quality of the obtained results is associated with the considered force field and its parameters. In the present work, the authors have investigated the procedure of partial charges fitting on the example of a triacetin molecule, containing chemical moieties present in the glycerol backbone. The goal of the study was to validate assigned partial charges based on the quality of the torsion profiles using optimally assigned torsional coefficients and reproduction of the condensed phase properties of triacetin. We applied various approaches and noticed a significant improvement in the parameterization of triacetin compared to the original one. The results showed that it is important to take into account the intermolecular interactions in the partial charges fitting procedure to obtain good quality validation results.
期刊介绍:
Chemistry and Physics of Lipids publishes research papers and review articles on chemical and physical aspects of lipids with primary emphasis on the relationship of these properties to biological functions and to biomedical applications.
Accordingly, the journal covers: advances in synthetic and analytical lipid methodology; mass-spectrometry of lipids; chemical and physical characterisation of isolated structures; thermodynamics, phase behaviour, topology and dynamics of lipid assemblies; physicochemical studies into lipid-lipid and lipid-protein interactions in lipoproteins and in natural and model membranes; movement of lipids within, across and between membranes; intracellular lipid transfer; structure-function relationships and the nature of lipid-derived second messengers; chemical, physical and functional alterations of lipids induced by free radicals; enzymatic and non-enzymatic mechanisms of lipid peroxidation in cells, tissues, biofluids; oxidative lipidomics; and the role of lipids in the regulation of membrane-dependent biological processes.