Mutation of the C-terminal leucine residue of PP2Ac inhibits PR55/B subunit binding and confers supersensitivity to microtubule destabilization in Saccharomyces cerevisiae.

D R Evans, B A Hemmings
{"title":"Mutation of the C-terminal leucine residue of PP2Ac inhibits PR55/B subunit binding and confers supersensitivity to microtubule destabilization in Saccharomyces cerevisiae.","authors":"D R Evans,&nbsp;B A Hemmings","doi":"10.1007/s004380000302","DOIUrl":null,"url":null,"abstract":"<p><p>Protein phosphatase 2A is ubiquitous among eukaryotes and exists as a family of holoenzymes in which the catalytic subunit. PP2Ac, binds a variety of regulatory subunits. Using the yeast Saccharomyces cerevisia, we have investigated the role of the phylogenetically invariant C-terminal leucine residue of PP2Ac, which, in mammalian cells, undergoes reversible methylation and modulates binding of the PR55/B subunit. In S. cerevisiae, the C-terminal Leu-377 residue of Pph22p (equivalent to human PP2Ac Leu-309) was dispensable for cell growth under optimum conditions and its removal, or substitution by alanine, did not inhibit PP2A activity in vitro. However, Leu-377 is required for binding of the yeast PR55/B subunit, Cdc55p, by Pph22p, though apparently not for the binding of Rts1p, the yeast PR61/B' subunit. Furthermore, mutation of this leucine enhanced the sensitivity of cells to microtubule destabilization, a defect characteristic of cdc55delta mutant cells, which are impaired for spindle checkpoint function. These results demonstrate that the regulation of PP2A, mediated by PR55/B binding to the highly conserved PP2Ac C-terminus, is critical for cell viability under conditions of microtubule damage and support a role for PP2A in exit from mitosis.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 4","pages":"425-32"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000302","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Protein phosphatase 2A is ubiquitous among eukaryotes and exists as a family of holoenzymes in which the catalytic subunit. PP2Ac, binds a variety of regulatory subunits. Using the yeast Saccharomyces cerevisia, we have investigated the role of the phylogenetically invariant C-terminal leucine residue of PP2Ac, which, in mammalian cells, undergoes reversible methylation and modulates binding of the PR55/B subunit. In S. cerevisiae, the C-terminal Leu-377 residue of Pph22p (equivalent to human PP2Ac Leu-309) was dispensable for cell growth under optimum conditions and its removal, or substitution by alanine, did not inhibit PP2A activity in vitro. However, Leu-377 is required for binding of the yeast PR55/B subunit, Cdc55p, by Pph22p, though apparently not for the binding of Rts1p, the yeast PR61/B' subunit. Furthermore, mutation of this leucine enhanced the sensitivity of cells to microtubule destabilization, a defect characteristic of cdc55delta mutant cells, which are impaired for spindle checkpoint function. These results demonstrate that the regulation of PP2A, mediated by PR55/B binding to the highly conserved PP2Ac C-terminus, is critical for cell viability under conditions of microtubule damage and support a role for PP2A in exit from mitosis.

PP2Ac c端亮氨酸残基突变抑制PR55/B亚基结合,并赋予酿酒酵母微管不稳定的超敏感性。
蛋白磷酸酶2A在真核生物中普遍存在,作为催化亚基的全酶家族而存在。PP2Ac结合多种调控亚基。利用酵母酿酒酵母,我们研究了PP2Ac的系统发育不变性c端亮氨酸残基的作用,该残基在哺乳动物细胞中经历可逆甲基化并调节PR55/B亚基的结合。在酿酒酵母中,Pph22p的c端Leu-377残基(相当于人类PP2Ac的Leu-309)在最佳条件下对细胞生长是必不可少的,并且去除或用丙氨酸取代它不会抑制体外PP2A的活性。然而,通过Pph22p结合酵母PR55/B亚基Cdc55p需要Leu-377,但显然不需要结合酵母PR61/B亚基Rts1p。此外,这种亮氨酸的突变增强了细胞对微管不稳定的敏感性,这是cdc55delta突变细胞的缺陷特征,其纺锤体检查点功能受损。这些结果表明,通过PR55/B结合高度保守的PP2Ac c端介导的PP2A的调控对微管损伤条件下的细胞活力至关重要,并支持PP2A在有丝分裂退出中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信