H Hayes, G P Di Meo, M Gautier, P Laurent, A Eggen, L Iannuzzi
{"title":"Localization by FISH of the 31 Texas nomenclature type I markers to both Q- and R-banded bovine chromosomes.","authors":"H Hayes, G P Di Meo, M Gautier, P Laurent, A Eggen, L Iannuzzi","doi":"10.1159/000056795","DOIUrl":null,"url":null,"abstract":"<p><p>A series of 31 marker genes (one per chromosome) were localized precisely to both Q- and R-banded bovine chromosomes by fluorescence in situ hybridization (FISH), as a contribution to the revised chromosome nomenclature of the three major domestic bovidae (cattle, sheep and goat). All marker genes except one (LDHA) are taken from the Texas Nomenclature of the cattle karyotype published in 1996. Homologous probes for each marker gene were obtained by screening a bovine BAC library by PCR with specific primer pairs. After labeling with biotin, each probe preparation was divided into two fractions and hybridized to bovine chromosomes identified either by Q or R banding. Clear signals and good quality band patterns were observed in all cases. Results of the two series of hybridizations are totally concordant both for Q and R band chromosome numbering and precise band localization. This work permits an unambiguous correlation between the Q/G- and R-banded 31 bovine chromosomes, including chromosomes 25, 27 and 29 which remained unresolved in the Texas Nomenclature (1996). Hybridization of the chromosome 29 marker gene to metaphase spreads from a 1;29 Robertsonian translocation bull carrier showed a positive signal on the short arm of this rearranged chromosome, confirming that the numbering of this long-known translocation in cattle is correct when referring to the Texas Nomenclature (1996). Taking into account that cattle, goat and sheep have very similar banded karyotypes, the data presented here will help to establish a definite and complete reference chromosome nomenclature for these species.</p>","PeriodicalId":10982,"journal":{"name":"Cytogenetics and cell genetics","volume":"90 3-4","pages":"315-20"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000056795","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytogenetics and cell genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000056795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36
Abstract
A series of 31 marker genes (one per chromosome) were localized precisely to both Q- and R-banded bovine chromosomes by fluorescence in situ hybridization (FISH), as a contribution to the revised chromosome nomenclature of the three major domestic bovidae (cattle, sheep and goat). All marker genes except one (LDHA) are taken from the Texas Nomenclature of the cattle karyotype published in 1996. Homologous probes for each marker gene were obtained by screening a bovine BAC library by PCR with specific primer pairs. After labeling with biotin, each probe preparation was divided into two fractions and hybridized to bovine chromosomes identified either by Q or R banding. Clear signals and good quality band patterns were observed in all cases. Results of the two series of hybridizations are totally concordant both for Q and R band chromosome numbering and precise band localization. This work permits an unambiguous correlation between the Q/G- and R-banded 31 bovine chromosomes, including chromosomes 25, 27 and 29 which remained unresolved in the Texas Nomenclature (1996). Hybridization of the chromosome 29 marker gene to metaphase spreads from a 1;29 Robertsonian translocation bull carrier showed a positive signal on the short arm of this rearranged chromosome, confirming that the numbering of this long-known translocation in cattle is correct when referring to the Texas Nomenclature (1996). Taking into account that cattle, goat and sheep have very similar banded karyotypes, the data presented here will help to establish a definite and complete reference chromosome nomenclature for these species.