{"title":"Cre recombinase expression in cerebellar Purkinje cells.","authors":"J J Barski, K Dethleffsen, M Meyer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The cerebellar cortex and its sole output, the Purkinje cell, have been implicated in motor coordination, learning and cognitive functions. Therefore, the ability to generate Purkinje cell-specific mutations in physiologically relevant genes is of particular neurobiological interest. A suitable approach is the Cre/loxP strategy that allows temporally and spatially controlled gene inactivation. Here, we present the characterization of transgenic mouse strains expressing Cre recombinase controlled by the L7/pcp-2 gene. Endogenous L7/pcp-2 protein is expressed exclusively in Purkinje cells and retinal bipolar neurones. Recombination was detected by beta-galactosidase histochemistry in tissues from crosses of the L7/pcp-2:Cre transgenic lines with two different indicator strains, GtROSA26 and ACZL. Purkinje cells in all folia of the cerebellum displayed intense beta-galactosidase staining, whereas only few blue cells were observed in the retina and other parts of the CNS. Thus, these transgenic lines are potentially of great importance for genetic manipulations in cerebellar Purkinje cells.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2000-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cerebellar cortex and its sole output, the Purkinje cell, have been implicated in motor coordination, learning and cognitive functions. Therefore, the ability to generate Purkinje cell-specific mutations in physiologically relevant genes is of particular neurobiological interest. A suitable approach is the Cre/loxP strategy that allows temporally and spatially controlled gene inactivation. Here, we present the characterization of transgenic mouse strains expressing Cre recombinase controlled by the L7/pcp-2 gene. Endogenous L7/pcp-2 protein is expressed exclusively in Purkinje cells and retinal bipolar neurones. Recombination was detected by beta-galactosidase histochemistry in tissues from crosses of the L7/pcp-2:Cre transgenic lines with two different indicator strains, GtROSA26 and ACZL. Purkinje cells in all folia of the cerebellum displayed intense beta-galactosidase staining, whereas only few blue cells were observed in the retina and other parts of the CNS. Thus, these transgenic lines are potentially of great importance for genetic manipulations in cerebellar Purkinje cells.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.