Di Li, Shaobing Xiong, Bo Peng, Weimin Liu*, Bo Li* and Qinye Bao*,
{"title":"Revealing Charge-Transfer Dynamics at Buried Charge-Selective Heterointerface in Highly Effective Perovskite Solar Cells","authors":"Di Li, Shaobing Xiong, Bo Peng, Weimin Liu*, Bo Li* and Qinye Bao*, ","doi":"10.1021/acs.jpclett.3c02138","DOIUrl":null,"url":null,"abstract":"<p >The suboptimal carrier dynamics at the heterointerface between the perovskite and charge transport layer severely limit further performance enhancement of the state-of-the-art perovskite solar cells (PSCs). Herein, we completely map charge carrier extraction and recombination kinetics over a broad time range at buried electron-selective heterointerfaces via ultrafast transient technologies. It is revealed that the heterointerfaces carefully contain the electronic processes of free charge generation in perovskite within ∼2.8 ps, relaxation process of trap-state induced electron capturing less than ∼10.0 ps, electron extraction from perovskite to SnO<sub>2</sub> within ∼194 ps, trap-assisted recombination within ∼2047 ps, and recombination between back-injected electrons and remaining holes within ∼8.4 ns. Moreover, we further demonstrate that the inserted poly(vinyl alcohol) (PVA) thin layer can effectively enhance the electron extraction from perovskite to SnO<sub>2</sub>, block the undesired electron back injection, and significantly suppress the nonradiative recombination, contributing to the improved device parameters of photovoltage and fill factor. This work sheds light on charge-transfer limitations at the perovskite buried heterointerface and provides an effective guide of ideal heterointerface design for promoting charge transfer and improving PSC performance.</p>","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"14 35","pages":"7953–7959"},"PeriodicalIF":4.8000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02138","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The suboptimal carrier dynamics at the heterointerface between the perovskite and charge transport layer severely limit further performance enhancement of the state-of-the-art perovskite solar cells (PSCs). Herein, we completely map charge carrier extraction and recombination kinetics over a broad time range at buried electron-selective heterointerfaces via ultrafast transient technologies. It is revealed that the heterointerfaces carefully contain the electronic processes of free charge generation in perovskite within ∼2.8 ps, relaxation process of trap-state induced electron capturing less than ∼10.0 ps, electron extraction from perovskite to SnO2 within ∼194 ps, trap-assisted recombination within ∼2047 ps, and recombination between back-injected electrons and remaining holes within ∼8.4 ns. Moreover, we further demonstrate that the inserted poly(vinyl alcohol) (PVA) thin layer can effectively enhance the electron extraction from perovskite to SnO2, block the undesired electron back injection, and significantly suppress the nonradiative recombination, contributing to the improved device parameters of photovoltage and fill factor. This work sheds light on charge-transfer limitations at the perovskite buried heterointerface and provides an effective guide of ideal heterointerface design for promoting charge transfer and improving PSC performance.
期刊介绍:
The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.