Ion channels and receptors: molecular targets for behavioral evolution.

R M Harris-Warrick
{"title":"Ion channels and receptors: molecular targets for behavioral evolution.","authors":"R M Harris-Warrick","doi":"10.1007/s003590000133","DOIUrl":null,"url":null,"abstract":"<p><p>Ion channels and receptors play critical roles in shaping neuronal activity, and thus are appropriate targets for evolutionary change to generate new behaviors. In this review, the evolution and differentiation of the many voltage-gated ion channels and transmitter-activated receptors is summarized; these channels and receptors evolved very early, and with some exceptions all species with nervous systems use similar sets of channels and receptors. Several examples are given of mechanisms for species-specific behavioral evolution that arise from mutations involving the structure, alternative splicing, level of expression, targeting and modulation of these important neural proteins.</p>","PeriodicalId":15522,"journal":{"name":"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology","volume":"186 7-8","pages":"605-16"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s003590000133","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of comparative physiology. A, Sensory, neural, and behavioral physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s003590000133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Ion channels and receptors play critical roles in shaping neuronal activity, and thus are appropriate targets for evolutionary change to generate new behaviors. In this review, the evolution and differentiation of the many voltage-gated ion channels and transmitter-activated receptors is summarized; these channels and receptors evolved very early, and with some exceptions all species with nervous systems use similar sets of channels and receptors. Several examples are given of mechanisms for species-specific behavioral evolution that arise from mutations involving the structure, alternative splicing, level of expression, targeting and modulation of these important neural proteins.

离子通道和受体:行为进化的分子靶标。
离子通道和受体在形成神经元活动中起着至关重要的作用,因此是进化变化产生新行为的适当目标。本文综述了多种电压门控离子通道和递质激活受体的演变和分化;这些通道和受体很早就进化出来了,除了一些例外,所有有神经系统的物种都使用类似的通道和受体。几个例子给出了物种特异性行为进化的机制,这些机制是由涉及这些重要神经蛋白的结构、选择性剪接、表达水平、靶向和调节的突变引起的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信