{"title":"Regulation of septation: a novel role for SerC/PdxF in Salmonella?","authors":"C Mouslim, D A Cano, A Flores, J Casadesús","doi":"10.1007/s004380000311","DOIUrl":null,"url":null,"abstract":"<p><p>The sfiW locus of Salmonella enterica, previously identified by mutations that suppress the cell division defect of His-constitutive (His(c)) strains, corresponds to serC, the bifunctional gene for phosphoserine-oxoglutarate aminotransferase (SerC) and 2-ketoerythroic acid 4-phosphate transaminase (PdxF). SerC- mutants form small, nearly spherical cells in a wild-type (His+) background, suggesting that the SerC/PdxF product acts as a septation antagonist. Suppression of His(c) filamentation by serC mutations may be explained by loss of the anti-septation activity of SerC/PdxF. The isolation of serC alleles that have lost their biosynthetic activities but are still able to inhibit septum formation suggests that the anti-septation activity of the SerC/PdxF product is unrelated to its known roles in serine and pyridoxine biosynthesis.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"264 1-2","pages":"184-92"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s004380000311","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s004380000311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The sfiW locus of Salmonella enterica, previously identified by mutations that suppress the cell division defect of His-constitutive (His(c)) strains, corresponds to serC, the bifunctional gene for phosphoserine-oxoglutarate aminotransferase (SerC) and 2-ketoerythroic acid 4-phosphate transaminase (PdxF). SerC- mutants form small, nearly spherical cells in a wild-type (His+) background, suggesting that the SerC/PdxF product acts as a septation antagonist. Suppression of His(c) filamentation by serC mutations may be explained by loss of the anti-septation activity of SerC/PdxF. The isolation of serC alleles that have lost their biosynthetic activities but are still able to inhibit septum formation suggests that the anti-septation activity of the SerC/PdxF product is unrelated to its known roles in serine and pyridoxine biosynthesis.