C A Brown, K Q McKinney, J S Kaufman, R A Gravel, R Rozen
{"title":"A common polymorphism in methionine synthase reductase increases risk of premature coronary artery disease.","authors":"C A Brown, K Q McKinney, J S Kaufman, R A Gravel, R Rozen","doi":"10.1177/204748730000700306","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Methionine synthase reductase (MTRR) catalyzes the regeneration of methylcobalamin, a cofactor of methionine synthase, an enzyme essential for maintaining adequate intracellular pools of methionine and tetrahydrofolate, as well as for maintaining homocysteine concentrations at nontoxic levels. We recently identified a common A-->G polymorphism at position 66 of the cDNA sequence of MTRR; this variant was associated with a greater than normal risk for spina bifida in the presence of low levels of cobalamin.</p><p><strong>Objective: </strong>To investigate whether the polymorphism was associated with alterations in levels of homocysteine, folate, and vitamin B12, and with risk of developing premature coronary artery disease (CAD), in a population of individuals presenting for cardiac catheterization procedures.</p><p><strong>Methods: </strong>We screened 180 individuals aged < 58 years with angiographically documented coronary-artery occlusions or occlusion-free major arteries for the presence of the 66A-->G MTRR polymorphism using a polymerase-chain-reaction-based assay.</p><p><strong>Results: </strong>We identified a trend in risk of premature CAD across the genotype groups (P = 0.03) with a sex-adjusted relative risk of premature CAD equal to 1.49 (95% confidence interval 1.10-2.03) for the GG versus AA genotype groups. There was no difference in fasting levels of plasma total homocysteine, serum folate, and vitamin B12 among the three MTRR genotypes.</p><p><strong>Conclusions: </strong>Our findings suggest that the GG genotype of MTRR is a significant risk factor for the development of premature CAD, by a mechanism independent of the detrimental vascular effects of hyperhomocysteinemia. This association needs to be confirmed in other studies.</p>","PeriodicalId":79345,"journal":{"name":"Journal of cardiovascular risk","volume":"7 3","pages":"197-200"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/204748730000700306","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cardiovascular risk","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/204748730000700306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
Background: Methionine synthase reductase (MTRR) catalyzes the regeneration of methylcobalamin, a cofactor of methionine synthase, an enzyme essential for maintaining adequate intracellular pools of methionine and tetrahydrofolate, as well as for maintaining homocysteine concentrations at nontoxic levels. We recently identified a common A-->G polymorphism at position 66 of the cDNA sequence of MTRR; this variant was associated with a greater than normal risk for spina bifida in the presence of low levels of cobalamin.
Objective: To investigate whether the polymorphism was associated with alterations in levels of homocysteine, folate, and vitamin B12, and with risk of developing premature coronary artery disease (CAD), in a population of individuals presenting for cardiac catheterization procedures.
Methods: We screened 180 individuals aged < 58 years with angiographically documented coronary-artery occlusions or occlusion-free major arteries for the presence of the 66A-->G MTRR polymorphism using a polymerase-chain-reaction-based assay.
Results: We identified a trend in risk of premature CAD across the genotype groups (P = 0.03) with a sex-adjusted relative risk of premature CAD equal to 1.49 (95% confidence interval 1.10-2.03) for the GG versus AA genotype groups. There was no difference in fasting levels of plasma total homocysteine, serum folate, and vitamin B12 among the three MTRR genotypes.
Conclusions: Our findings suggest that the GG genotype of MTRR is a significant risk factor for the development of premature CAD, by a mechanism independent of the detrimental vascular effects of hyperhomocysteinemia. This association needs to be confirmed in other studies.