The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.
E Somers, V Keijers, D Ptacek, M Halvorsen Ottoy, M Srinivasan, J Vanderleyden, D Faure
{"title":"The salCAB operon of Azospirillum irakense, required for growth on salicin, is repressed by SalR, a transcriptional regulator that belongs to the Lacl/GalR family.","authors":"E Somers, V Keijers, D Ptacek, M Halvorsen Ottoy, M Srinivasan, J Vanderleyden, D Faure","doi":"10.1007/pl00008692","DOIUrl":null,"url":null,"abstract":"<p><p>The salAB genes of Azospirillum irakense KBC1, which encode two aryl-beta-glucosidases, are required for growth on salicin. In the 4-kb region upstream of the salAB genes, two additional genes, salC and salR, were identified. SalC shows characteristics of the outer membrane receptors in the FepA/FhuA family. The salC AB genes are transcribed as a polycistronic mRNA. The salR gene encodes a protein homologous to the LacI/GalR family of transcriptional repressors. Expression of the sal operon, measured by means of a salC-gusA translational fusion in A. irkense KBC1, requires the presence of aryl-beta-glucosides such as arbutin and salicin. Expression is markedly enhanced when a simple carbon source, like glucose, cellobiose or malate, is added to the medium. In a salR mutant, expression of the salC-gusA fusion does not require an aryl-beta-glucoside inducer. Expression of a salR-gusA fusion is constitutive. The product of arbutin hydrolysis (hydroquinone) partly inhibits the expression of a salC-gusA fusion in arbutin- or salicin-containing minimal medium. This effect is independent of SalR. Salicylalcohol, the hydrolysis product of salicin, also partly inhibits salC expression in a SalR-independent fashion, but only in salicin-containing minimal medium.</p>","PeriodicalId":18636,"journal":{"name":"Molecular & general genetics : MGG","volume":"263 6","pages":"1038-46"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/pl00008692","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & general genetics : MGG","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/pl00008692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
The salAB genes of Azospirillum irakense KBC1, which encode two aryl-beta-glucosidases, are required for growth on salicin. In the 4-kb region upstream of the salAB genes, two additional genes, salC and salR, were identified. SalC shows characteristics of the outer membrane receptors in the FepA/FhuA family. The salC AB genes are transcribed as a polycistronic mRNA. The salR gene encodes a protein homologous to the LacI/GalR family of transcriptional repressors. Expression of the sal operon, measured by means of a salC-gusA translational fusion in A. irkense KBC1, requires the presence of aryl-beta-glucosides such as arbutin and salicin. Expression is markedly enhanced when a simple carbon source, like glucose, cellobiose or malate, is added to the medium. In a salR mutant, expression of the salC-gusA fusion does not require an aryl-beta-glucoside inducer. Expression of a salR-gusA fusion is constitutive. The product of arbutin hydrolysis (hydroquinone) partly inhibits the expression of a salC-gusA fusion in arbutin- or salicin-containing minimal medium. This effect is independent of SalR. Salicylalcohol, the hydrolysis product of salicin, also partly inhibits salC expression in a SalR-independent fashion, but only in salicin-containing minimal medium.