{"title":"Phylogenetic analysis of the Wnt gene family and discovery of an arthropod wnt-10 orthologue.","authors":"E L Jockusch, K A Ober","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Wnt genes encode a conserved family of secreted signaling proteins that play many roles in arthropod and vertebrate development. We have investigated both the phylogenetic history and molecular evolution of this gene family. We have identified a novel Wnt gene in a diversity of arthropods that it is likely an orthologue of the vertebrate Wnt-10 group. Wnt-10 is one of only two cases in which orthology between protostome and deuterostome genes could be consistently assigned based on our analyses. Despite difficulties in assessing orthologies, all of our trees suggest that the most recent common ancestor of protostomes and deuterostomes possessed more than the five Wnt genes known from either arthropods or nematodes. This suggests that Wnt gene loss has occurred during protostome evolution. In addition, we examined the rate of amino acid evolution in the two arthropod/deuterostome orthology groups we identified. We found little rate variation across taxa, with the exception that Drosophila Wnt-1 is evolving more rapidly than all vertebrate and most arthropod orthologues.</p>","PeriodicalId":15686,"journal":{"name":"Journal of Experimental Zoology","volume":"288 2","pages":"105-19"},"PeriodicalIF":0.0000,"publicationDate":"2000-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Zoology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Wnt genes encode a conserved family of secreted signaling proteins that play many roles in arthropod and vertebrate development. We have investigated both the phylogenetic history and molecular evolution of this gene family. We have identified a novel Wnt gene in a diversity of arthropods that it is likely an orthologue of the vertebrate Wnt-10 group. Wnt-10 is one of only two cases in which orthology between protostome and deuterostome genes could be consistently assigned based on our analyses. Despite difficulties in assessing orthologies, all of our trees suggest that the most recent common ancestor of protostomes and deuterostomes possessed more than the five Wnt genes known from either arthropods or nematodes. This suggests that Wnt gene loss has occurred during protostome evolution. In addition, we examined the rate of amino acid evolution in the two arthropod/deuterostome orthology groups we identified. We found little rate variation across taxa, with the exception that Drosophila Wnt-1 is evolving more rapidly than all vertebrate and most arthropod orthologues.