Recombinant P2Y receptors: the UCL experience

Brian F King , Andrea Townsend-Nicholson
{"title":"Recombinant P2Y receptors: the UCL experience","authors":"Brian F King ,&nbsp;Andrea Townsend-Nicholson","doi":"10.1016/S0165-1838(00)00134-X","DOIUrl":null,"url":null,"abstract":"<div><p>The beginning of the last decade heralded three important and sequential developments in our understanding of cell-to-cell signalling by extracellular ATP via its cell surface receptors, <em>the P2 purinoceptors</em>. One major development in ATP signalling culminated in a timely review in 1991, when it was established in the clearest of terms that ATP receptors exploited discrete signal transduction pathways (Dubyak, G.R., 1991. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell. Mol. Biol. 4, 295–300; and later in Dubyak, G.R., El-Moatassim, C., 1993. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577–C606). Henceforth, it was universally acknowledged that some P2 purinoceptors interacted with heterotrimeric G-proteins to activate intracellular signalling cascades (metabotropic ATP receptors), whereas others contained intrinsic ion-channels (ionotropic ATP receptors). A second key development can be traced to 1992, from the discovery that ATP receptors were involved in excitatory neurotransmission in the CNS and PNS (Edwards, F.A., Gibb, A.J., Colquhoun, D., 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147; Evans, R.J., Derkach, V., Surprenant, A., 1992. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503–505; Silinsky, E.M., Gerzanich, V., Vanner, S.M., 1992. ATP mediates excitatory synaptic transmission in mammalian neurones. Br. J. Pharmacol., 106, 762–763). Thereafter, it was accepted that ATP could play a neurotransmitter and/or modulatory role throughout the entire nervous system. The third key development stemmed from the isolation of a cDNA, from chick brain, encoding a metabotropic ATP receptor (Webb, T.E., Simon, J., Krishek, B.J., Bateson, A.N., Smart, T.G., King, B.F., Burnstock, G., Barnard, E.A., 1993. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324, 219–225). The cloning of a membrane protein serving as an ATP receptor ignited a widespread international interest in purinergic signalling. Investigators at University College London (UCL) — colleagues and associates of Geoffrey Burnstock — were at the forefront of this rapid phase of discovery. In this review, we highlight the UCL experience when the fields of molecular biology, physiology and cell biology converged to help advance our understanding of ATP as an extracellular signalling molecule.</p></div>","PeriodicalId":17228,"journal":{"name":"Journal of the autonomic nervous system","volume":"81 1","pages":"Pages 164-170"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0165-1838(00)00134-X","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the autonomic nervous system","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016518380000134X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The beginning of the last decade heralded three important and sequential developments in our understanding of cell-to-cell signalling by extracellular ATP via its cell surface receptors, the P2 purinoceptors. One major development in ATP signalling culminated in a timely review in 1991, when it was established in the clearest of terms that ATP receptors exploited discrete signal transduction pathways (Dubyak, G.R., 1991. Signal transduction by P2-purinergic receptors for extracellular ATP. Am. J. Respir. Cell. Mol. Biol. 4, 295–300; and later in Dubyak, G.R., El-Moatassim, C., 1993. Signal transduction via P2-purinergic receptors for extracellular ATP and other nucleotides. Am. J. Physiol. 265, C577–C606). Henceforth, it was universally acknowledged that some P2 purinoceptors interacted with heterotrimeric G-proteins to activate intracellular signalling cascades (metabotropic ATP receptors), whereas others contained intrinsic ion-channels (ionotropic ATP receptors). A second key development can be traced to 1992, from the discovery that ATP receptors were involved in excitatory neurotransmission in the CNS and PNS (Edwards, F.A., Gibb, A.J., Colquhoun, D., 1992. ATP receptor-mediated synaptic currents in the central nervous system. Nature 359, 144–147; Evans, R.J., Derkach, V., Surprenant, A., 1992. ATP mediates fast synaptic transmission in mammalian neurons. Nature 357, 503–505; Silinsky, E.M., Gerzanich, V., Vanner, S.M., 1992. ATP mediates excitatory synaptic transmission in mammalian neurones. Br. J. Pharmacol., 106, 762–763). Thereafter, it was accepted that ATP could play a neurotransmitter and/or modulatory role throughout the entire nervous system. The third key development stemmed from the isolation of a cDNA, from chick brain, encoding a metabotropic ATP receptor (Webb, T.E., Simon, J., Krishek, B.J., Bateson, A.N., Smart, T.G., King, B.F., Burnstock, G., Barnard, E.A., 1993. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324, 219–225). The cloning of a membrane protein serving as an ATP receptor ignited a widespread international interest in purinergic signalling. Investigators at University College London (UCL) — colleagues and associates of Geoffrey Burnstock — were at the forefront of this rapid phase of discovery. In this review, we highlight the UCL experience when the fields of molecular biology, physiology and cell biology converged to help advance our understanding of ATP as an extracellular signalling molecule.

重组P2Y受体:UCL经验
过去十年的开始预示着我们对细胞外ATP通过其细胞表面受体P2嘌呤受体进行细胞间信号传导的理解的三个重要和连续的发展。在1991年的一次及时回顾中,ATP信号转导的一个主要发展达到了高潮,当时ATP受体利用离散信号转导途径得到了最明确的确立(Dubyak, g.r., 1991)。p2 -嘌呤能受体对细胞外ATP的信号转导。点。j .和。细胞。分子生物学,4,295-300;后来在Dubyak, g.r., El-Moatassim, C, 1993。通过p2嘌呤能受体对细胞外ATP和其他核苷酸的信号转导。点。[j] .中国生物医学工程学报,2016,33(5):537 - 537。此后,人们普遍认为,一些P2嘌呤受体与异三聚体g蛋白相互作用,激活细胞内信号级联反应(代谢性ATP受体),而另一些则含有内在离子通道(离子型ATP受体)。第二个关键的发展可以追溯到1992年,从发现ATP受体参与中枢神经系统和PNS的兴奋性神经传递(Edwards, f.a., Gibb, a.j., Colquhoun, D., 1992)。中枢神经系统中ATP受体介导的突触电流。《自然》359,144-147;Evans, r.j., Derkach, V, Surprenant, A, 1992。ATP介导哺乳动物神经元的快速突触传递。自然杂志357,503-505;西林斯基,e.m.,格扎尼奇,V.,凡纳,s.m., 1992。ATP介导哺乳动物神经元的兴奋性突触传递。Br。j .杂志。, 106, 762-763)。此后,人们普遍认为ATP在整个神经系统中发挥神经递质和/或调节作用。第三个关键的发展源于从小鸡大脑中分离出编码代谢ATP受体的cDNA (Webb, t.e., Simon, J., Krishek, b.j., Bateson, a.n., Smart, t.g., King, b.f., Burnstock, G., Barnard, e.a., 1993)。脑g蛋白偶联ATP受体的克隆及功能表达。FEBS快报。324,219-225)。作为ATP受体的膜蛋白的克隆引起了国际上对嘌呤能信号传导的广泛兴趣。伦敦大学学院(UCL)的研究人员——杰弗里·伯恩斯托克的同事和同事——处于这一快速发现阶段的前沿。在这篇综述中,我们强调了UCL在分子生物学,生理学和细胞生物学领域融合时的经验,以帮助我们进一步了解ATP作为细胞外信号分子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信