Yanning Ding, Paolo Cesare, Liam Drew, Dimitra Nikitaki, John N Wood
{"title":"ATP, P2X receptors and pain pathways","authors":"Yanning Ding, Paolo Cesare, Liam Drew, Dimitra Nikitaki, John N Wood","doi":"10.1016/S0165-1838(00)00131-4","DOIUrl":null,"url":null,"abstract":"<div><p>A role for ATP in nociception and pain induction was proposed on the basis of human psychophysical experiments shortly after the formulation of the purinergic hypothesis. Following the pharmacological definition of distinct P2X and P2Y purinergic receptor subtypes by Burnstock and his collaborators, molecular cloning studies have identified the gene products that underlie the effects of ATP on peripheral sensory neurons. One particular receptor, P2X<sub>3</sub>, is of particular interest in the context of pain pathways, because it is relatively selectively expressed at high levels by nociceptive sensory neurons. Evidence that this receptor may play a role in the excitation of sensory neurons has recently been complemented by studies that suggest an additional presynaptic role in the regulation of glutamate release from primary afferent neurons in the dorsal horn of the spinal cord. In this brief review, we discuss the present state of knowledge of the role of ATP in pain induction through its action on peripheral P2X receptors.</p></div>","PeriodicalId":17228,"journal":{"name":"Journal of the autonomic nervous system","volume":"81 1","pages":"Pages 289-294"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0165-1838(00)00131-4","citationCount":"88","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the autonomic nervous system","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165183800001314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 88
Abstract
A role for ATP in nociception and pain induction was proposed on the basis of human psychophysical experiments shortly after the formulation of the purinergic hypothesis. Following the pharmacological definition of distinct P2X and P2Y purinergic receptor subtypes by Burnstock and his collaborators, molecular cloning studies have identified the gene products that underlie the effects of ATP on peripheral sensory neurons. One particular receptor, P2X3, is of particular interest in the context of pain pathways, because it is relatively selectively expressed at high levels by nociceptive sensory neurons. Evidence that this receptor may play a role in the excitation of sensory neurons has recently been complemented by studies that suggest an additional presynaptic role in the regulation of glutamate release from primary afferent neurons in the dorsal horn of the spinal cord. In this brief review, we discuss the present state of knowledge of the role of ATP in pain induction through its action on peripheral P2X receptors.