{"title":"The cerberus-related gene, Cerr1, is not essential for mouse head formation.","authors":"W Shawlot, J Min Deng, M Wakamiya, R R Behringer","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The Xenopus cerberus gene encodes a secreted factor expressed in the Spemann organizer that can cause ectopic head formation when its mRNA is injected into Xenopus embryos. In mouse, the cerberus-related gene, Cerr1, is expressed in the anterior mesendoderm that underlies the presumptive anterior neural plate and its expression is downregulated in Lim1 headless embryos. To determine whether Cerr1 is required for head formation we generated a null mutation in Cerr1 by gene targeting in mouse embryonic stem cells. We found that head formation is normal in Cerr1(-/-) embryos and we detected no obvious phenotypic defects in adult Cerr1(-/-) mice. However, in embryonic tissue layer recombination assays, Cerr1(-/-) presomitic/somitic mesoderm, unlike Cerr1-expressing wild-type presomitic/somitic mesoderm, was unable to maintain expression of the anterior neural marker gene Otx2 in ectoderm explants. These findings suggest that establishment of anterior identity in the mouse may involve the action of multiple functionally redundant factors.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2000-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Xenopus cerberus gene encodes a secreted factor expressed in the Spemann organizer that can cause ectopic head formation when its mRNA is injected into Xenopus embryos. In mouse, the cerberus-related gene, Cerr1, is expressed in the anterior mesendoderm that underlies the presumptive anterior neural plate and its expression is downregulated in Lim1 headless embryos. To determine whether Cerr1 is required for head formation we generated a null mutation in Cerr1 by gene targeting in mouse embryonic stem cells. We found that head formation is normal in Cerr1(-/-) embryos and we detected no obvious phenotypic defects in adult Cerr1(-/-) mice. However, in embryonic tissue layer recombination assays, Cerr1(-/-) presomitic/somitic mesoderm, unlike Cerr1-expressing wild-type presomitic/somitic mesoderm, was unable to maintain expression of the anterior neural marker gene Otx2 in ectoderm explants. These findings suggest that establishment of anterior identity in the mouse may involve the action of multiple functionally redundant factors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.