{"title":"The natriuretic peptides in heart failure: diagnostic and therapeutic potentials.","authors":"H H Chen, J C Burnett","doi":"10.1111/paa.1999.111.5.406","DOIUrl":null,"url":null,"abstract":"<p><p>The natriuretic peptides are a group of structurally similar but genetically distinct peptides that have diverse actions in cardiovascular, renal, and endocrine homeostasis. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are of myocardial cell origin and C-type natriuretic peptide (CNP) is of endothelial origin. ANP and BNP bind to the natriuretic peptide-A receptor (NPR-A), which, via 3',5'-cyclic guanosine monophosphate (cGMP), mediates natriuresis, vasodilation, renin inhibition, antimitogenesis, and lusitropic properties. CNP lacks natriuretic actions but possesses vasodilating and growth-inhibiting actions via the guanylyl cyclase-linked natriuretic peptide-B receptor (NPR-B). All three peptides are cleared by the natriuretic peptide-C receptor (NPR-C) and are degraded by the ectoenzyme neutral endopeptidase 24.11 (NEP), both of which are widely expressed in the kidneys, lungs, and the vascular wall. Congestive heart failure (CHF) represents a pathological state in which the activation of the natriuretic peptides exceeds those of all other states. In this brief review, we will attempt to provide an update on important issues regarding natriuretic peptides in CHF, with a focus on their functional importance as a beneficial humoral response in asymptomatic left ventricular dysfunction (LVD), the mechanisms of natriuretic peptide hyporesponsiveness in severe heart failure, the diagnostic and prognostic significance of the natriuretic peptides in CHF, and the therapeutic potential of the natriuretic peptides in this multiorgan syndrome.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/paa.1999.111.5.406","citationCount":"156","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Association of American Physicians","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/paa.1999.111.5.406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 156
Abstract
The natriuretic peptides are a group of structurally similar but genetically distinct peptides that have diverse actions in cardiovascular, renal, and endocrine homeostasis. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are of myocardial cell origin and C-type natriuretic peptide (CNP) is of endothelial origin. ANP and BNP bind to the natriuretic peptide-A receptor (NPR-A), which, via 3',5'-cyclic guanosine monophosphate (cGMP), mediates natriuresis, vasodilation, renin inhibition, antimitogenesis, and lusitropic properties. CNP lacks natriuretic actions but possesses vasodilating and growth-inhibiting actions via the guanylyl cyclase-linked natriuretic peptide-B receptor (NPR-B). All three peptides are cleared by the natriuretic peptide-C receptor (NPR-C) and are degraded by the ectoenzyme neutral endopeptidase 24.11 (NEP), both of which are widely expressed in the kidneys, lungs, and the vascular wall. Congestive heart failure (CHF) represents a pathological state in which the activation of the natriuretic peptides exceeds those of all other states. In this brief review, we will attempt to provide an update on important issues regarding natriuretic peptides in CHF, with a focus on their functional importance as a beneficial humoral response in asymptomatic left ventricular dysfunction (LVD), the mechanisms of natriuretic peptide hyporesponsiveness in severe heart failure, the diagnostic and prognostic significance of the natriuretic peptides in CHF, and the therapeutic potential of the natriuretic peptides in this multiorgan syndrome.