{"title":"Heme oxygenase: recent advances in understanding its regulation and role.","authors":"K K Elbirt, H L Bonkovsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Heme oxygenase (HO) is responsible for the physiological breakdown of heme into equimolar amounts of biliverdin, carbon monoxide, and iron. Three isoforms (HO-1, HO-2, and HO-3) have been identified. HO-1 is ubiquitous and its mRNA and activity can be increased several-fold by heme, other metalloporphyrins, transition metals, and stimuli that induce cellular stress. HO-1 is recognized as a major heat shock/stress response protein. Recent work from our laboratory has demonstrated several potential consensus regulatory elements in the 5'-untranslated region (UTR) of HO-1, including activator protein 1 (AP-1), metal responsive element (MRE), oncogene c-myc/max heterodimer binding site (Myc/Max), antioxidant response element (ARE), and GC box binding (Sp1) sites. Using deletion-reporter gene constructs, we have mapped sites that mediate the arsenite-dependent induction of HO-1, and we have shown that components of the extracellular signal-regulated kinase (ERK) and p38 (a homologue of the yeast HOG1 kinase), but not c-jun N-terminal kinase (JNK), mitogen-activated protein (MAP) kinase pathways are involved in arsenite-dependent upregulation. In contrast, HO-2 is present chiefly in the brain and testes and is virtually uninducible. HO-3 has very low activity; its physiological function probably involves heme binding. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a key role in the modulation of vascular tone, especially in the liver under physiological conditions, and in many organs under \"stressful\" conditions associated with HO-1 induction. Biliverdin and its product bilirubin, formed in most mammals, are potent antioxidants. In contrast, \"free\" iron increases oxidative stress and regulates the expression of many mRNAs (e.g., DCT-1, ferritin, and transferrin receptor) by affecting the conformation of iron regulatory protein (IRP)-1 and its binding to iron regulatory elements (IREs) in the 5'- or 3'-UTRs of the mRNAs.</p>","PeriodicalId":20612,"journal":{"name":"Proceedings of the Association of American Physicians","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Association of American Physicians","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Heme oxygenase (HO) is responsible for the physiological breakdown of heme into equimolar amounts of biliverdin, carbon monoxide, and iron. Three isoforms (HO-1, HO-2, and HO-3) have been identified. HO-1 is ubiquitous and its mRNA and activity can be increased several-fold by heme, other metalloporphyrins, transition metals, and stimuli that induce cellular stress. HO-1 is recognized as a major heat shock/stress response protein. Recent work from our laboratory has demonstrated several potential consensus regulatory elements in the 5'-untranslated region (UTR) of HO-1, including activator protein 1 (AP-1), metal responsive element (MRE), oncogene c-myc/max heterodimer binding site (Myc/Max), antioxidant response element (ARE), and GC box binding (Sp1) sites. Using deletion-reporter gene constructs, we have mapped sites that mediate the arsenite-dependent induction of HO-1, and we have shown that components of the extracellular signal-regulated kinase (ERK) and p38 (a homologue of the yeast HOG1 kinase), but not c-jun N-terminal kinase (JNK), mitogen-activated protein (MAP) kinase pathways are involved in arsenite-dependent upregulation. In contrast, HO-2 is present chiefly in the brain and testes and is virtually uninducible. HO-3 has very low activity; its physiological function probably involves heme binding. Products of the HO reaction have important effects: carbon monoxide is a potent vasodilator, which is thought to play a key role in the modulation of vascular tone, especially in the liver under physiological conditions, and in many organs under "stressful" conditions associated with HO-1 induction. Biliverdin and its product bilirubin, formed in most mammals, are potent antioxidants. In contrast, "free" iron increases oxidative stress and regulates the expression of many mRNAs (e.g., DCT-1, ferritin, and transferrin receptor) by affecting the conformation of iron regulatory protein (IRP)-1 and its binding to iron regulatory elements (IREs) in the 5'- or 3'-UTRs of the mRNAs.