{"title":"Involvement of NMDA and non-NMDA receptors in transmission of spinal visceral nociception in cat.","authors":"X J Song, Z Q Zhao","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To study the role of N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors in processing nociceptive visceral information in the spinal cord.</p><p><strong>Methods: </strong>The firing of spinal dorsal horn neurons to colorectal distension (3-15 kPa, 20 s) by inflation with air of latex balloon was recorded in 25 anesthetized cats.</p><p><strong>Results: </strong>1) According to the patterns of responses to colorectal distension, the neurons with increase and decrease in firing were classified as excitatory and inhibitory, respectively. The former consisted of 17 short-latency abrupt (SLA) neurons, 11 short-latency sustained (SLS) neurons, 9 long-latency (LL) neurons. The 15 inhibited (Inh) neurons were recorded. 2) Microelectrophoretic administration of NMDA, quisqualic acid (QA), and kainic acid (KA) activated 67.6%, 78.4%, and 59.5% of the colorectal distension-excited neurons tested. Also, 60%, 86.7%, and 53.3% of Inh neurons were activated by these 3 amino acids. 3) Colorectal distension-induced excitatory responses were reduced by 35% +/- 10% and 65% +/- 14% by a selective NMDA receptor antagonist d,l-2-amino-5-phosphonovalerate (APV) and a selective non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), respectively. Such DNQX-induced inhibition was significantly more potent than that by APV (P < 0.05). Colorectal distension-induced inhibitory responses were partially relieved by 30%-50% in 3/7 Inh neurons by DNQX, but not APV.</p><p><strong>Conclusion: </strong>Both NMDA and non-NMDA receptors are involved in transmission and/or modulation of spinal visceral nociceptive information and non-NMDA receptors may play more important role than NMDA receptors.</p>","PeriodicalId":24002,"journal":{"name":"Zhongguo yao li xue bao = Acta pharmacologica Sinica","volume":"20 4","pages":"308-12"},"PeriodicalIF":0.0000,"publicationDate":"1999-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo yao li xue bao = Acta pharmacologica Sinica","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: To study the role of N-methyl-D-aspartic acid (NMDA) and non-NMDA receptors in processing nociceptive visceral information in the spinal cord.
Methods: The firing of spinal dorsal horn neurons to colorectal distension (3-15 kPa, 20 s) by inflation with air of latex balloon was recorded in 25 anesthetized cats.
Results: 1) According to the patterns of responses to colorectal distension, the neurons with increase and decrease in firing were classified as excitatory and inhibitory, respectively. The former consisted of 17 short-latency abrupt (SLA) neurons, 11 short-latency sustained (SLS) neurons, 9 long-latency (LL) neurons. The 15 inhibited (Inh) neurons were recorded. 2) Microelectrophoretic administration of NMDA, quisqualic acid (QA), and kainic acid (KA) activated 67.6%, 78.4%, and 59.5% of the colorectal distension-excited neurons tested. Also, 60%, 86.7%, and 53.3% of Inh neurons were activated by these 3 amino acids. 3) Colorectal distension-induced excitatory responses were reduced by 35% +/- 10% and 65% +/- 14% by a selective NMDA receptor antagonist d,l-2-amino-5-phosphonovalerate (APV) and a selective non-NMDA receptor antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), respectively. Such DNQX-induced inhibition was significantly more potent than that by APV (P < 0.05). Colorectal distension-induced inhibitory responses were partially relieved by 30%-50% in 3/7 Inh neurons by DNQX, but not APV.
Conclusion: Both NMDA and non-NMDA receptors are involved in transmission and/or modulation of spinal visceral nociceptive information and non-NMDA receptors may play more important role than NMDA receptors.