Pei Qu , Min Pang , Penggong Wang , Xuli Ma , Zhaohui Zhang , Zongling Wang , Yuchen Gong
{"title":"Bioaccumulation of mercury along continuous fauna trophic levels in the Yellow River Estuary and adjacent sea indicated by nitrogen stable isotopes","authors":"Pei Qu , Min Pang , Penggong Wang , Xuli Ma , Zhaohui Zhang , Zongling Wang , Yuchen Gong","doi":"10.1016/j.jhazmat.2022.128631","DOIUrl":null,"url":null,"abstract":"<div><p>Mercury (Hg), and its organic forms, are some of the most hazardous elements, with strong toxicity, persistence, and biological accumulation in marine organisms. Hg accumulation in continuous trophic levels (TL) in marine food chains remains unclear. In this study, individual invertebrate and fish samples collected from the Yellow River Estuary adjacent sea were grouped into continuous TL ranges, and the bioaccumulations of total Hg (THg) and methylmercury (MeHg) were analyzed. The trophic magnification factor in invertebrates and fish was 1.40 and 1.72 for THg, and 2.56 and 2.17 for MeHg, indicating that both THg and MeHg were significantly biomagnified with increasing TL in both invertebrates and fish through trophic transfer. To evaluate the health risk of seafood consumption, the target hazard quotient (THQ) was calculated. Increasing THQ values indicated that the health risks of invertebrate and fish consumption in humans, especially children, were both elevated with increasing TL. THQ values > 1 indicated that consumption of invertebrates at a TL above 4.0 and fish above 4.5 may pose a relatively higher risk for children. Therefore, the consumption of both individual invertebrates and fish at high trophic positions may present greater health risk, especially in young children.</p></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"432 ","pages":"Article 128631"},"PeriodicalIF":12.2000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389422004204","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 7
Abstract
Mercury (Hg), and its organic forms, are some of the most hazardous elements, with strong toxicity, persistence, and biological accumulation in marine organisms. Hg accumulation in continuous trophic levels (TL) in marine food chains remains unclear. In this study, individual invertebrate and fish samples collected from the Yellow River Estuary adjacent sea were grouped into continuous TL ranges, and the bioaccumulations of total Hg (THg) and methylmercury (MeHg) were analyzed. The trophic magnification factor in invertebrates and fish was 1.40 and 1.72 for THg, and 2.56 and 2.17 for MeHg, indicating that both THg and MeHg were significantly biomagnified with increasing TL in both invertebrates and fish through trophic transfer. To evaluate the health risk of seafood consumption, the target hazard quotient (THQ) was calculated. Increasing THQ values indicated that the health risks of invertebrate and fish consumption in humans, especially children, were both elevated with increasing TL. THQ values > 1 indicated that consumption of invertebrates at a TL above 4.0 and fish above 4.5 may pose a relatively higher risk for children. Therefore, the consumption of both individual invertebrates and fish at high trophic positions may present greater health risk, especially in young children.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.