{"title":"Protective effect of melatonin on zymosan-induced cellular damage.","authors":"S Cuzzocrea, A P Caputi","doi":"10.1159/000014582","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated whether in vivo melatonin treatment inhibits cellular injury induced by peroxynitrite production and PARS activation in macrophages collected from rats subjected to zymosan-induced shock. Macrophages harvested from the peritoneal cavity exhibited a significant production of peroxynitrite, as measured by the oxidation of the fluorescent dye dihydrorhodamine 123. Furthermore, zymosan-induced shock suppressed macrophage mitochondrial respiration, DNA strand breakage, activation of the nuclear enzyme poly(ADP-ribose)synthetase (PARS) and reduction of cellular levels of NAD+. In vivo treatment with melatonin (25 and 50 mg/kg, i.p., 1 h after zymosan injection) significantly and dose-dependently reduced peroxynitrite formation and prevented the appearance of DNA damage, decrease in mitochondrial respiration, loss of cellular levels of NAD+ and PARS activation. Our study supports the view that the antioxidant and anti-inflammatoy effect of melatonin is also correlated with the inhibition of peroxynitrite production and PARS activation. In conclusion, melatonin may be a novel pharmacological approach to prevent cell injury in inflammation.</p>","PeriodicalId":79565,"journal":{"name":"Biological signals and receptors","volume":"8 1-2","pages":"136-42"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000014582","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological signals and receptors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000014582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
We investigated whether in vivo melatonin treatment inhibits cellular injury induced by peroxynitrite production and PARS activation in macrophages collected from rats subjected to zymosan-induced shock. Macrophages harvested from the peritoneal cavity exhibited a significant production of peroxynitrite, as measured by the oxidation of the fluorescent dye dihydrorhodamine 123. Furthermore, zymosan-induced shock suppressed macrophage mitochondrial respiration, DNA strand breakage, activation of the nuclear enzyme poly(ADP-ribose)synthetase (PARS) and reduction of cellular levels of NAD+. In vivo treatment with melatonin (25 and 50 mg/kg, i.p., 1 h after zymosan injection) significantly and dose-dependently reduced peroxynitrite formation and prevented the appearance of DNA damage, decrease in mitochondrial respiration, loss of cellular levels of NAD+ and PARS activation. Our study supports the view that the antioxidant and anti-inflammatoy effect of melatonin is also correlated with the inhibition of peroxynitrite production and PARS activation. In conclusion, melatonin may be a novel pharmacological approach to prevent cell injury in inflammation.