Xinfeng Li , Zheng Feng , Xiaolong Song , Yanfei Wang , Yong Zhang
{"title":"Effect of hydrogen charging time on hydrogen embrittlement of CoCrFeMnNi high-entropy alloy","authors":"Xinfeng Li , Zheng Feng , Xiaolong Song , Yanfei Wang , Yong Zhang","doi":"10.1016/j.corsci.2021.110073","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of hydrogen on mechanical properties<span><span> and failure mechanism of a CoCrFeMnNi high-entropy alloy was evaluated by in/ex-situ tensile tests and electron backscatter diffraction. The results indicate that yield strength first decreases and then increases as hydrogen charging time increases, which is attributed to the competition between the hydrogen-induced softening effect and the hydrogen-enhanced twinning formation effect. The hydrogen-uncharged sample shows the micro-void coalescence failure mechanism, whereas hydrogen-assisted cracking of the alloy initiates from grain boundaries and slip bands caused by plasticity-mediated decohesion mechanism. Crystallographic analysis demonstrates that {110}//ND grains and {001}//ND-{111}//ND grain boundaries are vulnerable to </span>hydrogen embrittlement.</span></p></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"198 ","pages":"Article 110073"},"PeriodicalIF":7.4000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X21008416","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12
Abstract
The effect of hydrogen on mechanical properties and failure mechanism of a CoCrFeMnNi high-entropy alloy was evaluated by in/ex-situ tensile tests and electron backscatter diffraction. The results indicate that yield strength first decreases and then increases as hydrogen charging time increases, which is attributed to the competition between the hydrogen-induced softening effect and the hydrogen-enhanced twinning formation effect. The hydrogen-uncharged sample shows the micro-void coalescence failure mechanism, whereas hydrogen-assisted cracking of the alloy initiates from grain boundaries and slip bands caused by plasticity-mediated decohesion mechanism. Crystallographic analysis demonstrates that {110}//ND grains and {001}//ND-{111}//ND grain boundaries are vulnerable to hydrogen embrittlement.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.