Ulf Ziemann, Frithjof Tergau, Stephan Wischer, Jörg Hildebrandt, Walter Paulus
{"title":"Pharmacological control of facilitatory I-wave interaction in the human motor cortex. A paired transcranial magnetic stimulation study","authors":"Ulf Ziemann, Frithjof Tergau, Stephan Wischer, Jörg Hildebrandt, Walter Paulus","doi":"10.1016/S0924-980X(98)00023-X","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>A novel paired transcranial magnetic stimulation (TMS) paradigm with a suprathreshold first and a subthreshold second stimulus was used in healthy volunteers to investigate the acute effects of a single oral dose of various CNS-active drugs on short-interval motor evoked potential (MEP) facilitation. MEPs were recorded from the relaxed abductor digiti muscle. Three peaks of MEP facilitation were consistently observed at interstimulus intervals of 1.1–1.5 ms, 2.3–2.7 ms, and 3.9–4.5 ms. The size of these MEP peaks was transiently suppressed by drugs which enhance gamma-aminobutyric acid (GABA) function in the neocortex (lorazepam, </span>vigabatrin, </span>phenobarbital<span><span>, ethanol), while the GABA-B receptor agonist baclofen<span>, anti-glutamate drugs (gabapentin, memantine), and sodium channel blockers (carbamazepine, lamotrigine) had no effect. The interstimulus intervals effective for the production of the MEP peaks remained unaffected by all drugs. The MEP peaks are thought to be due to a facilitatory interaction of I-(indirect) waves in the motor cortex. Therefore, the present results indicate that the production of I-waves is primarily controlled by GABA related neuronal circuits. The potential relevance of this non-invasive paired TMS protocol for the investigation of I-waves in patients with </span></span>neurological disease will be discussed.</span></p></div>","PeriodicalId":100400,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","volume":"109 4","pages":"Pages 321-330"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0924-980X(98)00023-X","citationCount":"177","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924980X9800023X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 177
Abstract
A novel paired transcranial magnetic stimulation (TMS) paradigm with a suprathreshold first and a subthreshold second stimulus was used in healthy volunteers to investigate the acute effects of a single oral dose of various CNS-active drugs on short-interval motor evoked potential (MEP) facilitation. MEPs were recorded from the relaxed abductor digiti muscle. Three peaks of MEP facilitation were consistently observed at interstimulus intervals of 1.1–1.5 ms, 2.3–2.7 ms, and 3.9–4.5 ms. The size of these MEP peaks was transiently suppressed by drugs which enhance gamma-aminobutyric acid (GABA) function in the neocortex (lorazepam, vigabatrin, phenobarbital, ethanol), while the GABA-B receptor agonist baclofen, anti-glutamate drugs (gabapentin, memantine), and sodium channel blockers (carbamazepine, lamotrigine) had no effect. The interstimulus intervals effective for the production of the MEP peaks remained unaffected by all drugs. The MEP peaks are thought to be due to a facilitatory interaction of I-(indirect) waves in the motor cortex. Therefore, the present results indicate that the production of I-waves is primarily controlled by GABA related neuronal circuits. The potential relevance of this non-invasive paired TMS protocol for the investigation of I-waves in patients with neurological disease will be discussed.