Leg muscle activation during gait in Parkinson's disease: influence of body unloading

V. Dietz , K.L. Leenders , G. Colombo
{"title":"Leg muscle activation during gait in Parkinson's disease: influence of body unloading","authors":"V. Dietz ,&nbsp;K.L. Leenders ,&nbsp;G. Colombo","doi":"10.1016/S0924-980X(97)00042-8","DOIUrl":null,"url":null,"abstract":"<div><p>The effect of body unloading (75, 50 and 25% of body weight) on upper and lower leg muscle activation during stepping on a treadmill was investigated in groups of patients with Parkinson's disease and age-matched healthy subjects. The aim of the study was to test the hypothesis that impaired extensor load receptor function exists in the patients. A strong load sensitivity was found for the gastrocnemius (GM) electromyographic (EMG) activity (i.e. EMG amplitude decreased with unloading during stepping in both groups of subjects). The change in the EMG amplitude of the rectus femoris was less dependent upon the load but was observed to be more pronounced in the patients. Upper and lower leg flexor muscles were relatively load-insensitive. The absolute GM EMG amplitude during the stance phase of stepping with normal body loading was significantly smaller in the patients than in the healthy subjects. It is suggested that the latter observation is due to a change in the threshold or bias of the extensor load reflex mechanism in the patients. The slope or gain of this reflex appears to be preserved.</p></div>","PeriodicalId":100400,"journal":{"name":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","volume":"105 5","pages":"Pages 400-405"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0924-980X(97)00042-8","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electroencephalography and Clinical Neurophysiology/Electromyography and Motor Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924980X97000428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

The effect of body unloading (75, 50 and 25% of body weight) on upper and lower leg muscle activation during stepping on a treadmill was investigated in groups of patients with Parkinson's disease and age-matched healthy subjects. The aim of the study was to test the hypothesis that impaired extensor load receptor function exists in the patients. A strong load sensitivity was found for the gastrocnemius (GM) electromyographic (EMG) activity (i.e. EMG amplitude decreased with unloading during stepping in both groups of subjects). The change in the EMG amplitude of the rectus femoris was less dependent upon the load but was observed to be more pronounced in the patients. Upper and lower leg flexor muscles were relatively load-insensitive. The absolute GM EMG amplitude during the stance phase of stepping with normal body loading was significantly smaller in the patients than in the healthy subjects. It is suggested that the latter observation is due to a change in the threshold or bias of the extensor load reflex mechanism in the patients. The slope or gain of this reflex appears to be preserved.

帕金森病步态中的腿部肌肉激活:身体卸载的影响
在帕金森病患者和年龄相匹配的健康受试者中,研究了在踏车时身体负荷(体重的75,50和25%)对上肢和下肢肌肉激活的影响。本研究的目的是验证患者存在伸肌负荷受体功能受损的假设。腓肠肌(GM)肌电图(EMG)活动具有很强的负荷敏感性(即两组受试者在踏步过程中EMG振幅随卸载而下降)。股直肌肌电图振幅的变化对负荷的依赖性较小,但在患者中观察到更为明显。上肢和下肢屈肌相对负荷不敏感。正常负荷下站立阶段的GM肌电信号绝对振幅明显小于健康受试者。这表明后一种观察结果是由于患者伸肌负荷反射机制的阈值或偏差的变化。这种反射的斜率或增益似乎被保留了下来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信