{"title":"Corpus-based identification and refinement of semantic classes.","authors":"A Nazarenko, P Zweigenbaum, J Bouaud, B Habert","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Medical Language Processing (MLP), especially in specific domains, requires fine-grained semantic lexica. We examine whether robust natural language processing tools used on a representative corpus of a domain help in building and refining a semantic categorization. We test this hypothesis with ZELLIG, a corpus analysis tool. The first clusters we obtain are consistent with a model of the domain, as found in the SNOMED nomenclature. They correspond to coarse-grained semantic categories, but isolate as well lexical idiosyncrasies belonging to the clinical sub-language. Moreover, they help categorize additional words.</p>","PeriodicalId":79455,"journal":{"name":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","volume":" ","pages":"585-9"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233482/pdf/procamiaafs00001-0620.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Medical Language Processing (MLP), especially in specific domains, requires fine-grained semantic lexica. We examine whether robust natural language processing tools used on a representative corpus of a domain help in building and refining a semantic categorization. We test this hypothesis with ZELLIG, a corpus analysis tool. The first clusters we obtain are consistent with a model of the domain, as found in the SNOMED nomenclature. They correspond to coarse-grained semantic categories, but isolate as well lexical idiosyncrasies belonging to the clinical sub-language. Moreover, they help categorize additional words.