Corpus-based identification and refinement of semantic classes.

A Nazarenko, P Zweigenbaum, J Bouaud, B Habert
{"title":"Corpus-based identification and refinement of semantic classes.","authors":"A Nazarenko,&nbsp;P Zweigenbaum,&nbsp;J Bouaud,&nbsp;B Habert","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Medical Language Processing (MLP), especially in specific domains, requires fine-grained semantic lexica. We examine whether robust natural language processing tools used on a representative corpus of a domain help in building and refining a semantic categorization. We test this hypothesis with ZELLIG, a corpus analysis tool. The first clusters we obtain are consistent with a model of the domain, as found in the SNOMED nomenclature. They correspond to coarse-grained semantic categories, but isolate as well lexical idiosyncrasies belonging to the clinical sub-language. Moreover, they help categorize additional words.</p>","PeriodicalId":79455,"journal":{"name":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","volume":" ","pages":"585-9"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233482/pdf/procamiaafs00001-0620.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Medical Language Processing (MLP), especially in specific domains, requires fine-grained semantic lexica. We examine whether robust natural language processing tools used on a representative corpus of a domain help in building and refining a semantic categorization. We test this hypothesis with ZELLIG, a corpus analysis tool. The first clusters we obtain are consistent with a model of the domain, as found in the SNOMED nomenclature. They correspond to coarse-grained semantic categories, but isolate as well lexical idiosyncrasies belonging to the clinical sub-language. Moreover, they help categorize additional words.

基于语料库的语义类识别和细化。
医学语言处理(MLP),特别是在特定领域,需要细粒度的语义词典。我们研究了在一个领域的代表性语料库上使用的健壮的自然语言处理工具是否有助于构建和改进语义分类。我们用语料库分析工具ZELLIG检验了这一假设。我们获得的第一个集群与领域的模型一致,正如在SNOMED命名法中发现的那样。它们对应于粗粒度的语义类别,但也孤立属于临床亚语言的词汇特质。此外,它们还有助于对额外的单词进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信