Using 3-D shape models to guide segmentation of MR brain images.

K P Hinshaw, J F Brinkley
{"title":"Using 3-D shape models to guide segmentation of MR brain images.","authors":"K P Hinshaw,&nbsp;J F Brinkley","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters.</p>","PeriodicalId":79455,"journal":{"name":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","volume":" ","pages":"469-73"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233453/pdf/procamiaafs00001-0505.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate segmentation of medical images poses one of the major challenges in computer vision. Approaches that rely solely on intensity information frequently fail because similar intensity values appear in multiple structures. This paper presents a method for using shape knowledge to guide the segmentation process, applying it to the task of finding the surface of the brain. A 3-D model that includes local shape constraints is fitted to an MR volume dataset. The resulting low-resolution surface is used to mask out regions far from the cortical surface, enabling an isosurface extraction algorithm to isolate a more detailed surface boundary. The surfaces generated by this technique are comparable to those achieved by other methods, without requiring user adjustment of a large number of ad hoc parameters.

利用三维形状模型指导脑磁共振图像分割。
医学图像的准确分割是计算机视觉的主要挑战之一。仅仅依赖强度信息的方法经常失败,因为相似的强度值出现在多个结构中。本文提出了一种利用形状知识指导分割过程的方法,并将其应用于寻找大脑表面的任务。将包含局部形状约束的三维模型拟合到MR体积数据集上。由此产生的低分辨率表面用于掩盖远离皮质表面的区域,使等值面提取算法能够隔离更详细的表面边界。该技术生成的曲面与其他方法产生的曲面相当,不需要用户调整大量的特别参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信