An expert-guided decision tree construction strategy: an application in knowledge discovery with medical databases.

Y S Tsai, P H King, M S Higgins, D Pierce, N P Patel
{"title":"An expert-guided decision tree construction strategy: an application in knowledge discovery with medical databases.","authors":"Y S Tsai,&nbsp;P H King,&nbsp;M S Higgins,&nbsp;D Pierce,&nbsp;N P Patel","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>With the steady growth in electronic patient records and clinical medical informatics systems, the data collected for routine clinical use have been accumulating at a dramatic rate. Inter-disciplinary research provides a new generation of computation tools in knowledge discovery and data management is in great demand. In this study, an expert-guided decision tree construction strategy is proposed to offer an user-oriented knowledge discovery environment. The strategy allows experts, based on their expertise and/or preference, to override inductive decision tree construction process. Moreover, by reviewing decision paths, experts could focus on subsets of data that may be clues to new findings, or simply contaminated cases.</p>","PeriodicalId":79455,"journal":{"name":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","volume":" ","pages":"208-12"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2233397/pdf/procamiaafs00001-0246.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings : a conference of the American Medical Informatics Association. AMIA Fall Symposium","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the steady growth in electronic patient records and clinical medical informatics systems, the data collected for routine clinical use have been accumulating at a dramatic rate. Inter-disciplinary research provides a new generation of computation tools in knowledge discovery and data management is in great demand. In this study, an expert-guided decision tree construction strategy is proposed to offer an user-oriented knowledge discovery environment. The strategy allows experts, based on their expertise and/or preference, to override inductive decision tree construction process. Moreover, by reviewing decision paths, experts could focus on subsets of data that may be clues to new findings, or simply contaminated cases.

专家指导决策树构建策略在医学数据库知识发现中的应用。
随着电子病历和临床医学信息系统的稳步发展,临床常规使用的数据也在以惊人的速度积累。跨学科研究为知识发现和数据管理提供了新一代的计算工具。本研究提出了一种专家指导的决策树构建策略,以提供面向用户的知识发现环境。该策略允许专家根据他们的专业知识和/或偏好,超越归纳决策树的构建过程。此外,通过审查决策路径,专家可以专注于可能是新发现线索的数据子集,或者仅仅是受污染的案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信