Computerized determination of proliferating cell nuclear antigen expression in meningiomas. A comparison with non-automated method.

General & diagnostic pathology Pub Date : 1997-06-01
A Konstantinidou, E Patsouris, N Kavantzas, P M Pavlopoulos, V Bouropoulou, P Davaris
{"title":"Computerized determination of proliferating cell nuclear antigen expression in meningiomas. A comparison with non-automated method.","authors":"A Konstantinidou,&nbsp;E Patsouris,&nbsp;N Kavantzas,&nbsp;P M Pavlopoulos,&nbsp;V Bouropoulou,&nbsp;P Davaris","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Proliferating cell nuclear antigen (PCNA) expression has been proven to be a significant marker of cell proliferation in meningiomas, which correlates with growth rate and, as shown by several authors, possibly provides prognostic information concerning biologic behavior. However, the current method for determining PCNA labeling index (LI) is tedious and time consuming like all the nonautomated methods for evaluating cell kinetics, presenting high interobserver and interlaboratory variability and low reproducibility. In the present study, we introduce a semi-automated computer-assisted image analysis method for determining PCNA LI in 38 meningiomas, in parallel with the current nonautomated method. Image analysis technique permits unbiased cell counting, standardizes the degree of staining intensity and provides instant results. By calculating coefficient of variability, the method proved to be highly reproducible. The correlation between the results provided by the nonautomated and the semiautomated image analysis method showed a high agreement between them, with a correlation coefficient, r, of 0.82. In conclusion, we consider that image analysis contributes to the accuracy, reproducibility, and practicality of PCNA LI determination so that along with other useful parameters this significant marker may serve to predict the clinical behavior in meningiomas.</p>","PeriodicalId":79430,"journal":{"name":"General & diagnostic pathology","volume":"142 5-6","pages":"311-6"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General & diagnostic pathology","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Proliferating cell nuclear antigen (PCNA) expression has been proven to be a significant marker of cell proliferation in meningiomas, which correlates with growth rate and, as shown by several authors, possibly provides prognostic information concerning biologic behavior. However, the current method for determining PCNA labeling index (LI) is tedious and time consuming like all the nonautomated methods for evaluating cell kinetics, presenting high interobserver and interlaboratory variability and low reproducibility. In the present study, we introduce a semi-automated computer-assisted image analysis method for determining PCNA LI in 38 meningiomas, in parallel with the current nonautomated method. Image analysis technique permits unbiased cell counting, standardizes the degree of staining intensity and provides instant results. By calculating coefficient of variability, the method proved to be highly reproducible. The correlation between the results provided by the nonautomated and the semiautomated image analysis method showed a high agreement between them, with a correlation coefficient, r, of 0.82. In conclusion, we consider that image analysis contributes to the accuracy, reproducibility, and practicality of PCNA LI determination so that along with other useful parameters this significant marker may serve to predict the clinical behavior in meningiomas.

脑膜瘤中增殖细胞核抗原表达的计算机测定。与非自动化方法的比较。
增殖细胞核抗原(PCNA)的表达已被证明是脑膜瘤细胞增殖的一个重要标志,它与生长速度有关,正如一些作者所表明的那样,可能提供有关生物学行为的预后信息。然而,与所有评估细胞动力学的非自动化方法一样,目前测定PCNA标记指数(LI)的方法繁琐且耗时,呈现出高度的观察者间和实验室间变异性和低重复性。在本研究中,我们介绍了一种半自动计算机辅助图像分析方法,用于测定38例脑膜瘤的PCNA LI,与目前的非自动化方法平行。图像分析技术允许无偏细胞计数,标准化染色强度的程度,并提供即时结果。通过变异系数的计算,证明该方法具有较高的重现性。非自动化图像分析方法与半自动图像分析方法提供的结果具有较高的相关性,相关系数r为0.82。总之,我们认为图像分析有助于PCNA LI测定的准确性、再现性和实用性,因此与其他有用的参数一起,这一重要的标志物可能有助于预测脑膜瘤的临床行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信