S David, A Rice, I Vianes, V Duperray, M Dupouy, J Reiffers
{"title":"Expansion of blood CD34 positive cells: committed precursors expansion does not affect immature hematopoietic progenitors.","authors":"S David, A Rice, I Vianes, V Duperray, M Dupouy, J Reiffers","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>CD34 positive (CD34+) cells contain all hematopoietic progenitors from stem cells to committed precursors. Therefore the transplantation of purified bone marrow or blood CD34+ cells is sufficient for hematopoietic recovery after a myeloablative radiochemotherapy. Using different techniques, CD34+ progenitors can be induced to undergo terminal differentiation in a stroma-free liquid culture system in the presence of cytokines. In the present study, we have evaluated the functional potential of CD34+ blood progenitors after ex-vivo expansion cultures. CD34+ cells were isolated from 16 samples (PBSC n = 8 and Cord Blood (CB) n = 8) using either ISOLEX 50 (n=6), CEPRATE LC CD34 kit (n = 6) or MICROCELLECTOR T-25 Stem Cell kit (n = 4). CD34+ cells were cultured for seven days in the presence of 500 UI/ML of IL-1, 10 ng/ml of IL-3 and 10 ng/ml of SCF. We obtained an 8-fold expansion of nucleated cells. We observed a 59-fold expansion of GM-CSF responsive committed precursors, a 4.4-fold expansion of IL-1+IL-3+SCF+Epo responsive multilineage progenitors and a 2.2-fold expansion of the 5-FU resistant quiescent progenitors. We did not observe any significant difference in the amplification/expansion parameters between cultures initiated with CD34+ cells from PBSC or CB. Our data show that cytokine mediated ex-vivo expansion of blood CD34+ cells can produce a large number of committed precursors without affecting the compartment of the most immature progenitors. These results suggest that cytokine-mediated amplification technology could be of great interest in the autologous transplantation setting.</p>","PeriodicalId":19366,"journal":{"name":"Nouvelle revue francaise d'hematologie","volume":"37 6","pages":"343-9"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nouvelle revue francaise d'hematologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CD34 positive (CD34+) cells contain all hematopoietic progenitors from stem cells to committed precursors. Therefore the transplantation of purified bone marrow or blood CD34+ cells is sufficient for hematopoietic recovery after a myeloablative radiochemotherapy. Using different techniques, CD34+ progenitors can be induced to undergo terminal differentiation in a stroma-free liquid culture system in the presence of cytokines. In the present study, we have evaluated the functional potential of CD34+ blood progenitors after ex-vivo expansion cultures. CD34+ cells were isolated from 16 samples (PBSC n = 8 and Cord Blood (CB) n = 8) using either ISOLEX 50 (n=6), CEPRATE LC CD34 kit (n = 6) or MICROCELLECTOR T-25 Stem Cell kit (n = 4). CD34+ cells were cultured for seven days in the presence of 500 UI/ML of IL-1, 10 ng/ml of IL-3 and 10 ng/ml of SCF. We obtained an 8-fold expansion of nucleated cells. We observed a 59-fold expansion of GM-CSF responsive committed precursors, a 4.4-fold expansion of IL-1+IL-3+SCF+Epo responsive multilineage progenitors and a 2.2-fold expansion of the 5-FU resistant quiescent progenitors. We did not observe any significant difference in the amplification/expansion parameters between cultures initiated with CD34+ cells from PBSC or CB. Our data show that cytokine mediated ex-vivo expansion of blood CD34+ cells can produce a large number of committed precursors without affecting the compartment of the most immature progenitors. These results suggest that cytokine-mediated amplification technology could be of great interest in the autologous transplantation setting.