{"title":"New insights into directed cell migration: characteristics and mechanisms.","authors":"H Gruler","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>The present article describes how it is possible to elucidate the essential cellular machines controlling directed migration. Investigations are performed with cells like granulocytes, fibroblasts or neural crest cells and these cells are found to contain two independent types of machines, a steerer (controller without feedback) for the speed and an automatic controller (controller with feedback) for the angle of migration. The first intracellular signal is the distribution of membrane bound receptors occupied by kinesis stimulating molecules from the extracellular space. Motile force is produced by a linear motor supplied by the chemically amplified first intracellular signal (total number of occupied receptors). When properties of the cellular steering device are investigated, results show the angle of migration to be corrected by an automatic controller and an asymmetric distribution of occupied receptors to be the first intracellular signal for directed migration. Properties of the goal-seeking device are also investigated. As in many different types of technical machines, the cellular machinery operates in a cyclic manner which in the case of granulocytes a measuring cycle of 8 s and a response cycle of approximately 60 s. These cellular machines may be understood in terms of a self-ignition mechanism where the renewal of membrane bound receptors is the essential step.</p>","PeriodicalId":19366,"journal":{"name":"Nouvelle revue francaise d'hematologie","volume":"37 5","pages":"255-65"},"PeriodicalIF":0.0000,"publicationDate":"1995-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nouvelle revue francaise d'hematologie","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The present article describes how it is possible to elucidate the essential cellular machines controlling directed migration. Investigations are performed with cells like granulocytes, fibroblasts or neural crest cells and these cells are found to contain two independent types of machines, a steerer (controller without feedback) for the speed and an automatic controller (controller with feedback) for the angle of migration. The first intracellular signal is the distribution of membrane bound receptors occupied by kinesis stimulating molecules from the extracellular space. Motile force is produced by a linear motor supplied by the chemically amplified first intracellular signal (total number of occupied receptors). When properties of the cellular steering device are investigated, results show the angle of migration to be corrected by an automatic controller and an asymmetric distribution of occupied receptors to be the first intracellular signal for directed migration. Properties of the goal-seeking device are also investigated. As in many different types of technical machines, the cellular machinery operates in a cyclic manner which in the case of granulocytes a measuring cycle of 8 s and a response cycle of approximately 60 s. These cellular machines may be understood in terms of a self-ignition mechanism where the renewal of membrane bound receptors is the essential step.